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1 Introduction 
Examining the relationship between mechanical 

deformations and elastic fields is a very important 

task. Study by Altzoumailis and Kytopoulos deals 

with the connection of applied elastic stress to the 

micromagnetic activity of steels [1]. It is shown that 

an increase in supplied elastic strain leads to the 

broadening of both distribution modes. The 

following essential conclusion can be done in [1]: 

elastic stress applied far from below the 

macroscopic elastic limit, may facilitate suitable 

quantitative as well as qualitative changes in the 

micromagnetic activity of ferromagnetic steels. 

Paper [2] describes a fully integrated acoustic sensor 

that combines high sensitivity in wide frequency 

range. The Saint-Venant torsion of a homogenous, 

isotropic elastic cylindrical body is a classical 

problem of elasticity [3,4,5], which is solved using a 

semi inverse method by assuming a state of pure 

shear in the cylindrical body so that it gives rise to a 

resultant torque over the end cross sections. 

Extension of more complicated cases of anisotropic 

or non-homogeneous materials has been considered 

by Lekhnitskii [6,7], Rooney and Ferrai [8], Davi 

[9], Bisegna [10,11], Horgan and Chan [12], 

Rovenski et. al. [13,14], Rovenski and Abramovich 

[15], Horgan [16], Ecsedi and Baksa [17,18,19].  

In this paper, the torsional deformation of radially 

non-homogeneous piezoelectric solid and hollow 

circular cylinders is studied. The material of the 

circular cylinder is functionally graded. In the 

considered case the dependence of the material 

parameters from the radial coordinate is described 

by a smooth function of the radial coordinate 

[21,22]. In the present problem the power law 

distribution is prescribed. Let 𝐾 be an arbitrary 

material parameter its dependence of the radial 

coordinate is given by equation (1) 

𝐾(𝑟) = 𝑓(𝑟)𝑘, (1) 

where 

𝑓(𝑟) = 𝑓1 (
𝑟 − 𝑅2

𝑅1 − 𝑅2
)

𝑛

+ 𝑓2 (
𝑟 − 𝑅1

𝑅2 − 𝑅1
)

𝑛

  

                          𝑓1 > 0  𝑓2 > 0   𝑓1 + 𝑓2 = 1. (2) 

In equation (2) 𝑅1 and 𝑅2 are the radii of the inner 

and outer boundary circle of the cross section 𝐴 (see 

Figure 1), 𝑓1, 𝑓2 and 𝑛 are material parameter. 𝑓1 

and 𝑓2 are units free.  

 
Fig. 1 Circular cylindrical bar with torsional load. 
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The applied torque is denoted by 𝑇 and the unit 

vectors of the Cartesian coordinate system 𝑂𝑥𝑦𝑧 are 

𝒆𝑥, 𝒆𝑦 and 𝒆𝑧 (see Figure 1). Later on the polar 

coordinates 𝑟,  𝜑,  𝑧 will be used which are defined 

as 

𝑟 = √𝑥2 + 𝑦2      φ = arctan
𝑦

𝑥
. (3) 

The unit vectors of the polar coordinate system 

𝑂𝑟φ𝑧 are 𝒆𝑟,  𝒆𝜑 and 𝒆𝑧 (see Fig. 1).  

The formulation of the Saint-Venant’s theory of 

uniform torsion for homogenous piezoelectric 

beams has been given by Dave [9], Bisegna [10,11] 

and Rovenski et al. [13,14]. The papers of Bisegna 

[10,11] use the Prandtl’s stress function and electric 

displacement potential function for simply 

connected cross section. Davi [9] obtained a coupled 

boundary-value problem for the torsion function and 

for the electric potential function from a constrained 

three dimensional static problem by the application 

of the usual assumptions of the Saint-Venant’s 

theory. Rovenski et al. [13,14] give a torsion and 

electric potential functions formulation of the Saint-

Venant’s torsion problem for monoclinic 

homogeneous piezoelectric beams. In these papers 

[13,14], a coupled Neumann problem is derived for 

the torsion and electric potential functions, where 

exact and numerical solutions for elliptical and 

rectangular cross sections are presented. Ecsedi and 

Baksa give a formulation of the Saint-Venant 

torsion for homogeneous monoclinic piezoelectric 

beams in terms of Prandt’s stress function and 

electric displacement potential function. The 

Prandtl’s stress function and electric displacement 

potential function satisfy a coupled Dirichlet 

problem in the multiply connected cross section. A 

direct formulation and a variational formulation are 

developed in paper [17]. In an another paper by 

Ecsedi and Baksa [18], a variational formulation of 

the uniform torsion is presented for homogeneous 

linear piezoelectric monoclinic beams. The 

variational formulation uses the torsion and electric 

potential functions as independent quantities in 

paper [18]. Rovenski and Abramovich apply a linear 

analysis to piezoelectric beams with non-

homogeneous cross sections that consist of various 

monoclinic piezoelectric and elastic materials [15]. 

They give the solution procedure for extension, 

bending, torsion and shearing. The developed 

theoretical method is illustrated by numerical 

examples [15]. Paper [20] deals with radially non-

homogenous orthotropic piezoelectric circular 

cylinder, where the fundamental variables are the 

torsion function and electric potential function, so 

called 𝑐𝑖𝑗𝑘𝑙
𝐸 ,  𝑒𝑘𝑖𝑗 ,  ε𝑖𝑘

𝑠  formulation is used. 

 

2 Governing equations 
Let 𝐵 = 𝐴 × (0, 𝐿) be a right circular cylinder. 

Let 𝐴1 and 𝐴2 be the bases of the cylinder and let 

𝐴3 = 𝜕𝐴 × (0, 𝐿) the mantle of the cylinder 𝐵 (see 

Figure 1). The cross section of the cylinder is 𝐴 and 

its boundary circles are denoted by 𝜕𝐴1 and 𝜕𝐴2. It 

is evident 

𝐴 = {(𝑥, 𝑦)| 𝑅1
2 ≤ 𝑥2 + 𝑦2 ≤ 𝑅2

2}, (4) 

𝜕𝐴𝑖 = {(𝑥, 𝑦)| 𝑥2 + 𝑦2 = 𝑅𝑖
2}(𝑖 = 1,2). (5) 

The constitutive equations for orthotropic 

linearly piezoelectric material can be represented as 

𝛾𝑥𝑧 = 𝜗 (
𝜕𝜔

𝜕𝑥
− 𝑦) = 𝑓(𝑟)[𝑠55𝜏𝑥𝑧 + 𝑔15𝐷𝑥], (6) 

𝛾𝑦𝑧 = 𝜗 (
𝜕𝜔

𝜕𝑦
+ 𝑥) = 𝑓(𝑟)[𝑠44𝜏𝑦𝑧 + 𝑔24𝐷𝑦], (7) 

𝐸𝑥 = 𝑓(𝑟)[−𝑔15𝜏𝑥𝑧 + 𝛽11𝐷𝑥], (8) 

𝐸𝑦 = 𝑓(𝑟)[−𝑔24𝜏𝑦𝑧 + 𝛽22𝐷𝑦]. (9) 

In equations (6-9), 𝜔 = 𝜔(𝑥, 𝑦) is the torsion 

function, 𝛾𝑥𝑧 and 𝛾𝑦𝑧 are the shearing strains, 𝜗 is 

the rate of twist, 𝜏𝑥𝑧, 𝜏𝑦𝑧 are the shearing stresses 

𝐷𝑥, 𝐷𝑦 are the components of electric displacement 

vector and 𝐸𝑥, 𝐸𝑦 are the components of the electric 

field vector, 𝑠55 and 𝑠44 are the shear flexibility 

coefficients, 𝑔15, 𝑔24 are the piezoelectric constants, 

𝛽1, 𝛽2 are the inverses of permittivity constants. The 

components of the electric field vectors are obtained 

from the electric potential field 𝜗𝜙 

𝐸𝑥 = −𝜗
𝜕𝜙

𝜕𝑥
,     𝐸𝑦 = −𝜗

𝜕𝜙

𝜕𝑦
. (10) 

According to the solutions of the stress 

equilibrium equation for 𝜏𝑥𝑧 and 𝜏𝑦𝑧 and Gauss 

equation for 𝐷𝑥 and 𝐷𝑦 they are expressed in terms 

of Prandt’s stress function and electric displacement 

potential function [11,17] as 

𝜏𝑥𝑧 = 𝜗
𝜕𝑈

𝜕𝑦
,    𝜏𝑦𝑧 = −𝜗

𝜕𝑈

𝜕𝑥
, (11) 

𝐷𝑥 = 𝜗
𝜕𝐹

𝜕𝑦
,     𝐷𝑦 = −𝜗

𝜕𝐹

𝜕𝑥
. (12) 

Here, 𝑈 = 𝑈(𝑥, 𝑦) is the Prandtl’s stress function 

and 𝐹 = 𝐹(𝑥, 𝑦) is the electric displacement 

potential function. These functions satisfy the 

following boundary conditions [17] 

     𝑈(𝑥, 𝑦) = 0   (𝑥, 𝑦) ∈ 𝜕𝐴2,  
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𝑈(𝑥, 𝑦) = 𝑈1 = const.    (𝑥, 𝑦) ∈ 𝜕𝐴1, (13) 

     𝐹(𝑥, 𝑦) = 0   (𝑥, 𝑦) ∈ 𝜕𝐴2 , 
𝐹(𝑥, 𝑦) = 𝐹1 = const.    (𝑥, 𝑦) ∈ 𝜕𝐴1. (14) 

 

3 Formulation of the solution 
It is assumed that 

𝜔(𝑥, 𝑦) = 𝐶𝜔𝑥𝑦      𝜙(𝑥, 𝑦) = 𝐶𝜙𝑥𝑦, (15) 

𝜕𝑈

𝜕𝜑 
= 0      

𝜕𝐹

𝜕𝜑
= 0, (16) 

that is 𝑈 = 𝑈(𝑟), 𝐹 = 𝐹(𝑟). In this case, from 

equations (6-9) and (10), (15) and (16) it follows 

that  

𝐶𝜔 − 1 =
𝑓(𝑟)

𝑟
[𝑠55

𝜕𝑈

𝜕𝑟
+ 𝑔15

𝜕𝐹

𝜕𝑟
], (17) 

𝐶𝜔 + 1 = −
𝑓(𝑟)

𝑟
[𝑠44

𝜕𝑈

𝜕𝑟
+ 𝑔25

𝜕𝐹

𝜕𝑟
], (18) 

−𝐶𝜙 =
𝑓(𝑟)

𝑟
[−𝑔15

𝜕𝑈

𝜕𝑟
+ 𝛽11

𝜕𝐹

𝜕𝑟
], (19) 

𝐶𝜙 =
𝑓(𝑟)

𝑟
[𝑔24

𝜕𝑈

𝜕𝑟
− 𝛽22

𝜕𝐹

𝜕𝑟
]. (20) 

Combination of equation (17) with equation (18) 

gives 

𝑠
𝜕𝑈

𝜕𝑟
+ 𝑔

𝜕𝐹

𝜕𝑟
= −2

𝑟

𝑓(𝑟)
     𝑅1 ≤ 𝑟 ≤ 𝑅2, (21) 

where 

𝑠 = 𝑠55 + 𝑠44     𝑔 = 𝑔15 + 𝑔24. (22) 

From equations (19) and (20) we obtain 

𝑔
𝜕𝑈

𝜕𝑟
− 𝛽

𝜕𝐹

𝜕𝑟
= 0     𝑅1 ≤ 𝑟 ≤ 𝑅2, (23) 

𝛽 = 𝛽11 + 𝛽22. (24) 

The solution of the system of equations (21) and 

(23) for 
𝜕𝑈

𝜕𝑟
 and 

𝜕𝐹

𝜕𝑟
 are 

𝜕𝑈

𝜕𝑟
= −

−2𝛽

𝑠𝛽+𝑔2

𝑟

𝑓(𝑟)
      𝑅1 ≤ 𝑟 ≤ 𝑅2, (25) 

𝜕𝐹

𝜕𝑟
= −

2𝑔

𝑠𝛽+𝑔2

𝑟

𝑓(𝑟)
      𝑅1 ≤ 𝑟 ≤ 𝑅2. (26) 

From equations (25) and (26) under the boundary 

conditions 

𝑈(𝑅2) = 0     𝐹(𝑅2) = 0 (27) 

it follows that 

𝑈(𝑟) =
2𝛽

𝑠𝛽+𝑔2 ∫
𝜌

𝑓(𝜌)
d𝜌

𝑅2

𝑟
, (28) 

𝑈(𝑅1) =
2𝛽

𝑠𝛽+𝑔2 ∫
𝜌

𝑓(𝜌)
d𝜌,

𝑅2

𝑅1
 (29) 

𝐹(𝑟) =
2𝑔

𝑠𝛽+𝑔2 ∫
𝜌

𝑓(𝜌)
d𝜌

𝑅2

𝑟
, (30) 

𝐹(𝑅1) = ∫
𝜌

𝑓(𝜌)
d𝜌

𝑅2

𝑅1
. (31) 

The expression of shearing stresses 𝜏𝑟𝑧 and 𝜏𝑟𝜑 

are 

𝜏𝑟𝑧 = 0     𝜏𝜑𝑧 = −𝜑
𝜕𝑈

𝜕𝑟
=

2𝜙𝑟𝛽

(𝑠𝛽+𝑔2)𝑓(𝑟)
. (32) 

The radial and tangential components of the 

electric displacement vector are 

𝐷𝑟 = 0      𝐷𝜑 = −𝜗
𝜕𝐹

𝜕𝑟
=

2𝜗𝑟𝑔

(𝑠𝛽+𝑔2)𝑓(𝑟)
. (33) 

The expression of the elastic torsional rigidity 𝑆𝐸 

is obtained as 

      𝑆𝐸 =
𝑇

𝜗
= 

=
1

𝜗
∫ 2𝜋𝑟2𝜏𝜑𝑧d𝑟

𝑅2

𝑅1
=

4𝜋𝛽

𝑠𝛽+𝑔2 ∫
𝑟3

𝑓(𝑟)
d𝑟.

𝑅2

𝑅1
 (34) 

The electric torsional rigidity 𝑆𝐷 is defined as  

𝑆𝐷 =
1

𝜗
∫ 2𝜋𝑟2𝐷𝜑d𝑟

𝑅2

𝑅1
=

4𝜋𝛽

𝑠𝛽+𝑔2 ∫
𝑟3

𝑓(𝑟)
d𝑟.

𝑅2

𝑅1
 (35) 

It is evident 

𝑆𝐷

𝑆𝐸
=

𝑔

𝛽
. (36) 

The constant 𝐶𝜔 is obtained from equations (17) 

and (18). A simple computation gives 

𝐶𝜔 =
(𝑠44−𝑠55)(𝛽11+𝛽22)+𝑔24

2 −𝑔15
2

(𝑠44+𝑠55)(𝛽11+𝛽22)+(𝑔15+𝑔24)2. (37) 

In a similar way the constant 𝐶𝜙 can be 

computed from equations (19) and (20) 

𝐶𝜙 =
(𝑔24−𝑔15)(𝛽11+𝛽22)+(𝑔15+𝑔24)(𝛽11−𝛽22)

(𝑠44+𝑠55)(𝛽11+𝛽22)+(𝑔15+𝑔24)2 . (38) 

Equations (36) and (37) show that the torsion 

function 𝜔(𝑥, 𝑦) = 𝐶𝜔𝑥𝑦 and electric potential 

function 𝜙 = 𝐶𝜙𝑥𝑦 do not depend on the material 

inhomogeneity. 

 

 

4 Elastic cylindrical body 
For elastic cylindrical body 

𝑔15 = 𝑔24 = 0. (39) 

In this case 

𝑈(𝑟) =
2

𝑠44+𝑠55
∫

𝜌

𝑓(𝜌)
d𝜌

𝑅2

𝑟
     𝑅1 ≤ 𝑟 ≤ 𝑅2, (40) 

𝐹(𝑟) = 0     𝑅1 ≤ 𝑟 ≤ 𝑅2, (41) 
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𝑆𝐸 =
4𝜋

𝑠44+𝑠55
∫

𝑟3

𝑓(𝑟)
d𝑟

𝑅2

𝑅1
        𝑆𝐷 = 0, (42) 

𝐶𝜔 =
𝑠44−𝑠55

𝑠44+𝑠55
         𝐶𝜙 = 0. (43) 

 

 

5 Numerical example 
The following data are used in the numerical 

example: 

𝑅1 = 0.01 m, 𝑅2 = 0.02 m, 𝜗 = 0.5 × 10−2rad/m 

𝑓1 = 0.2, 𝑓2 = 0.8,   

𝑠55 = 1.927 411 813 × 10−11 m2/N 

𝑠44 = 2.769 957 090 × 10−11 m2/N 

𝑔15 = 0.038 967 890 460 m2/C 

𝑔24 = 0.047 323 389 110 m2/C 

𝛽11 = 7.673 768 900 × 107 Vm/C 

𝛽22 = 4.676 146 855 × 107Vm/C 

For power index 𝑛 = 1,2,3,4 the graphs of 

𝑓(𝑟, 𝑛) as a function of 𝑟 are shown in Figure 2. 

 
Fig. 2 The plots of 𝑓(𝑟, 𝑛) as a function of 𝑟. 

The dependence of Prandtl’s stress function from 

the power index 𝑛 for 𝑛 = 1,2,3,4 is presented in 

Figure 3. 

 

Fig. 3 The graphs of the Prandtl’s stress function for 

𝑛 = 1,2,3,4 as a function of 𝑟. 

The dependence of electric displacement function 

from the power index 𝑛 for 𝑛 = 1,2,3,4 is presented 

in Figure 4 as a function of radial coordinate 𝑟. 

 
Fig. 4 Plots of electric displacement function 𝐹(𝑟, 𝑛) 

for 𝑛 = 1,2,3,4 and 𝑅1 ≤ 𝑟 ≤ 𝑅2. 

Figure 5 and Figure 6 show the plots of shearing 

stress 𝜏𝜑𝑧 circular component of electric 

displacement vector for 𝑛 = 1,2,3,4 as a function of 

radial coordinate 𝑟. 

 
Fig. 5 Plots of shearing stresses. 

 
Fig. 6 Plots of 𝐷𝜑(𝑟, 𝑛) a function of 𝑟 for 𝑛 =

1,2,3,4. 

The elastic torsion rigidity 𝑆𝐸 as a function of power 

index 𝑛 is given in Figure 7 for −6 ≤ 𝑛 ≤ 6. 
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Fig. 7 The torsional rigidity 𝑆𝐸 as a function of 𝑛 for 

−6 ≤ 𝑛 ≤ 6. 

The dependence of electric torsional rigidity 𝑆𝐷 

from the power index 𝑛 for −6 ≤ 𝑛 ≤ 6 is shown in 

Figure 8. 

 
Fig. 8 The electric torsional rigidity 𝑆𝐷 as a function 

of 𝑛 −6 ≤ 𝑛 ≤ 6. 

 

 

5 Conclusion 
An analytical solution is presented for the torsion of 

hollow and solid piezoelectric cylinder. The 

governing variables are the Prandtl’s stress function 

and electric displacement potential function. The 

material of the cylinder is functional graded. It is a 

smooth power function of the radial coordinate. A 

complete solution is presented for the Saint-Venant 

torsion of orthotropic piezoelectric cylinder. The 

paper investigates the dependence of mechanical 

and electric fields from the power index of the radial 

inhomogeneity. 
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