
Abstract: In this paper, we first analyzed several basic population dynamics models interpreting the
relationships between three species. These are the May-Leonard model with three competitors, some
prey-predator models of three-species and a prey-predator model with a super-predator. Subsequently,
in our work, we proposed a new three-species model consisting of a prey, a predator and a super-
predator, including some important assumptions such as competition, self-defense and infected prey. We
examined the various equilibrium points of proposed model, and determined the conditions for extinction
and survival of species in the long term. Finally, we performed numerical illustrations using Maltlab
software to corroborate the theoretical results.
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1 Introduction
Prey-predator interaction is one of the most
widely discussed topics in the field of popula-
tion dynamics, [1, 2, 3]. Early research focused
on the predation relationship between a preda-
tor and its prey. In these studies, The authors
focused on the fluctuation of population den-
sities during interactions. Several other types
of relationships (competition, cooperation, par-
asitism...) between species have also been stud-
ied. The authors in [4], for example, analyze dif-
ferent types of prey-predator relationships (com-
petition, cooperation, competition and cooper-
ation), providing numerical illustrations to cor-
roborate theoretical calculations. Subsequently,
the relationships between predators, their preys
and the biotope were examined in several stud-
ies. Some authors reveal the effects that climate
change can have on interactions between preys
and predators in various ecosystems; others show
that habitat may cause disruption of interactions
between preys and predators, [5]. It’s a subject
of crucial importance, given our interest in the
fate of the creatures that surround us and pro-

vide us with resources, [6, 7]. To help preserve
certain essential resources, some studies have fo-
cused on the problems of harvesting and hunting,
with a view to finding optimal conditions for the
use of harvested resources. The results of these
studies define the biomass stocks to be preserved
in order to guarantee the regeneration of these
resources, [3, 8]. A number of studies have been
carried out on the relationship between predators
and their preys, including infected individuals.
During prey-predator interactions, a phenomenon
very often occurs that is detrimental to the preda-
tor population. In their desire to escape from
predators, prey use several means to defend them-
selves (this is the case of buffaloes and giraffes
that often bear fatal blows to their predators).
Refuge is one of these means, as the authors in [4],
discuss. Some prey defend themselves vigorously
against predators, often causing enormous dam-
age to the predator population. Some studies also
take into account group hunting and defense. In
[9], for example, the authors examine the evolu-
tion of populations of prey that defend themselves
in groups and generalist predators that hunt co-
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operatively; (this is the case, for example, of hye-
nas, which generally hunt in groups). On the
other hand, the consumption of certain infected
prey can lead to disease in the predator popula-
tion, resulting in high reduction rates. In fact,
consumption of infectious prey is detrimental to
predators. In [10], the authors discuss the health
benefits of a healthy diet. In this paper, we an-
alyze several models of interaction between three
species. Thus we propose and study a new model
of interaction between three species. Our model
incorporates generalist predators, wich have mul-
tiple alternative food sources and can enhance
their fitness by using theses resources. We also
consider that some prey species possess the abil-
ity to defend themselves collectively, and these
defensive actions negatively impact the predator
population. specifically, such actions can lead to
losses within the predator population, especially
affecting younger predators which are often in-
jured. we account for the fact some prey are in-
fected, leading to their destruction and that the
predators consuming these infected prey (whether
dead or alive) also suffer from the infection. We
represent by a rate τ all the harmful actions (in-
fection, defenses) of the prey on the predators.
Our work is organized as follows. The section 2
which examines a number of models of popula-
tion evolution of three species in a given environ-
ment, contains several subsections. We start by
reviewing key essential concepts for our analysis.
Next, we present and analyze the May-Leonard
model with three competitors and then, we dis-
cuss several prey-predator models with three
species. These models include prey-predator
model with two preys species and one predator,
the prey-predator-super predator model and the
prey-predator with prey harvesting. For each
model, we provide examples of natural interac-
tions, study equilibrium points and perform nu-
merical simulations.
Finally, in Section 3, we propose a new three-
species prey-predator model that takes into ac-
count competition, self-defence and the presence
of infected prey. We examine different equilib-
rium points of proposed model, determine the
conditions for extinction and long-term survival
and conduct numerical simulations to support
our theorical result using matlab software version
R2014b.

2 Generalities on population
evolution models of three
species interacting in a given
environment

2.1 Reminder of some important
notions

A circulant matrix M ∈ M(Cn) is a square ma-
trix of the following form (1), [11]. In fact, a cir-
culant matrix is a square matrix formed by circu-
lar permutations of the coefficients that compose
the matrix. In general, in a circulant matrix, you
can move from one row to another by moving the
coefficients from left to right.

M =


a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2
...

...
... . . .

...
a1 a2 a3 . . . a0

 , (1)

and that the eigenvalues of such matrix are,

µk =

n−1∑
j=0

ajλ
jk, k = 0, . . . , n− 1, (2)

where λ = exp(2πi/n) and the eigenvectors are,

ϖk = (1, λk, λ2k, . . . , λ(n−1)k), k = 0, . . . , n− 1.
(3)

We use the following notations in our work.

R3
+ =

{
(x1, x2, x3)

T ∈ R3/xi ⩾ 0, i = 1, . . . , 3
}
,

(4)
and the interior of this set is denoted as follows

Int(R3
+) =

{
(x1, x2, x3)

T ∈ R3/xi > 0, i = 1, . . . , 3
}
.

(5)
We recall the following comparison lemma.

Lemma 2.1 [12] If A > 0, B > 0 and dx
dt ≥

x(A−Bx), when t ≥ 0 and x(0) > 0, we have

lim inf
t−→+∞

x(t) ≥ A

B
. (6)

If A > 0, B > 0 and dx
dt ≤ x(A−Bx), when t ≥ 0

and x(0) > 0, we have

lim sup
t−→+∞

x(t) ≤ A

B
. (7)

Let n, p ∈ N∗ and consider the following system
of autonomous differential equations{

dx
dt = f(x),

x(0) = x0,
(8)
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such that f : Ω ⊂ Rn → Rp is a map of a non-
empty open set Ω of Rn differentiable at a ∈ Ω.

Definition 2.1 [13] The Jacobian matrix of f in
a is denoted by

Jac(f)(a) =
(

∂fi
∂xj

(a)
)

1⩽ i⩽ p
1⩽ j⩽n

(9)

that is the matrix of partial derivatives ∂fi
∂xj

in

a, with 1 ⩽ i ⩽ p and 1 ⩽ j ⩽ n, relative to the
canonical bases Bn and Bp of Rn and Rp respec-
tively.

Lemma 2.2 [13], [14] Let us consider f : Ω ⊂
Rn → Rn with n ∈ N∗ and let a ∈ Ω. We have

• If all the eigenvalues of Jac(f)(a) have a
strictly negative real part, then the nonlinear
system (8) is asymptotically stable.

• If at least one eigenvalue has a real part
strictly greater than 0, then the nonlinear sys-
tem (8) is unstable.

• If the Jacobian matrix Jac(f)(a) has zero
eigenvalue or a pair of purely imaginary
complex-conjugate eigenvalues, then we are
in a critical case; we cannot conclude any-
thing.

Stable equilibrium points that are not asymp-
totically stable can only occur at non-hyperbolic
equilibrium points. However, to find out whether
a non-hyperbolic equilibrium point is stable,
asymptotically stable or unstable we resort to
Lyapunov’s method which is very useful in an-
swering this question.

Theorem 2.1 ([14], [15], [16]) Consider the
following polynomial:

P (X) = a0X
n+a1X

n−1+a2X
n−2+· · ·+an−1X+an,

(10)
with ai ∈ R, i = {0, ..., n} .
The roots of the polynomial P have all negative
real parts if and only if all the principal minors
of the Hurwitz matrix are strictly positive.

That is to say, all solutions of the equation
P (X) = 0, have negative real parts if and only
if, the below n principal minors are all positive.

∆i =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · · 0

a3 a2 a1
...

a5 a4 a3
. . .

...
...

...
. . . ai−1

· · · · · · · · · · · · ai

∣∣∣∣∣∣∣∣∣∣∣∣
, (11)

with (i = 1, ..., n).

Theorem 2.2 [17] Consider f : Ω ⊂ Rn → Rn

and V : V ⊂ Rn → R+ functions of class C1.
Suppose V̇ (u) ≤ 0 for all u ∈ V. Let I be a
compact, positively invariant subset of V. Define
B as the set of points in I on which V̇ (u) = 0,

i.e. B =
{
u ∈ I, V̇ (u) = 0

}
and Ω the largest

invariant subset of B.
Then, all solutions of (8) bounded for t ≥ 0,

converge to Ω when t −→ ∞.

2.2 Model of three competitors of
May-Leonard

Scientists Robert McCredie May and Warren
Leonard introduced a model of three species com-
peting for the same resource, [18]. The study
of this model allowed to examine unexpected be-
haviors of these competitors. This results in rich
population dynamics. The above interactions can
be summarized in the figure below, (Figure 1).
Indeed, we can find several examples of species
that compete with resources available in a given
environment. Here, we give an example where
selected species are in competition in their en-
vironment for the resources found there, (Figure
2).

These species of birds feed on plants (leaves,
seeds, nectar and sap) and various animals (in-
vertebrates, small animals, dead animal bodies,
fish, slugs and snails).

z y

x

co
m
p
et
it
io
n

competition

c
o
m
p
e
titio

n

Figure 1: Diagram of competition interactions
between three species.

The differential system of the Lotka-Volterra
type which describes the competition interaction
of these three populations with the same growth
rate and density x, y and z is given by the fol-
lowing expression:

dx
dt = x(1− x− a y − b z),
dy
dt = y(1− b x− y − a z),
dz
dt = z(1− a x− b y − z).

(12)

Initial densities are x(0) ≥ 0, y(0) ≥ 0 and
z(0) ≥ 0. The parameters a and b are such
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Figure 2: Example of a food chain in nature. (Im-
ages, Planet Animals).

0 < b < 1 and a + b > 2. In this model, all
three species are assumed to have the same in-
trinsic growth rate, r=1. Parameters a and b
represent competition rates, so that the system
is cyclically symmetrical. Studying the model
(12), we obtain five equilibrium points. The triv-
ial equilibrium points are (0, 0, 0)T , (1, 0, 0)T ,
(0, 0, 1)T , (0, 1, 0)T and the positive equilibrium
point is (x∗, y∗, z∗)T with x∗ = y∗ = z∗ = 1

1+a+b .
The stability of each equilibrium point is exam-
ined below. We have the following proposition.

Proposition 2.1 System (12) of May-
Leonard’s three competitors has:

the equilibrium point (0, 0, 0)T which is an
unstable node.

-- the equilibrium points (0, 0, 1)T , (0, 1, 0)T ,
(1, 0, 0)T and (x∗, y∗, z∗)T which are unsta-
ble.

Proof: The Jacobian matrix of system

(12) is given by the following expression:

Jac(f) =

(
a11 −a x −b x
−b y a22 −a y
−a z −b z a33

)
. (13)

with

a11 = 1− 2x− a y − b z, (14)

a22 = 1− 2 y − b x− a z, (15)

a33 = 1− 2z − a x− b y. (16)

Jacobian matrices at equilibrium points
(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T are

Jac(f)(0, 0, 0)T =

(
1 0 0
0 1 0
0 0 1

)
, (17)

Jac(f)(1, 0, 0)T =

( −1 −a −b
0 1− b 0
0 0 1− a

)
,

(18)

Jac(f)(0, 1, 0)T =

(
1− a 0 0
−b −1 −a
0 0 1− b

)
,

(19)

Jac(f)(0, 0, 1)T =

(
1− b 0 0
0 1− a 0
−a −b −1

)
,

(20)

the eigenvalue of Jac(f)(0, 0, 0)T is 1 and the
others Jacobian matrices have the same
eigenvalues that are −1, 1 − a and 1 − b.
Knowing that 1 − b > 0, all equilibrium
points are saddle points and therefore un-
stable. Moreover, the Jacobian matrix at
equilibrium point (x∗, y∗, z∗)T is

Jac(f)(x∗, y∗, z∗)T =
1

1 + a+ b

( −1 −a −b
−b −1 −a
−a −b −1

)
.

(21)

It’s a circulant matrix of order 3.
Thus using the properties of circu-
lant matrix, the following three eigen-
values are obtained: λ0 = −1 and
λ1 = λ̄2 = 1

1+a+b

(
− 1 − a exp(2πi3 ) − b exp(4πi3 )

)
with real part 1

1+a+b

(
− 1 + a+b

2

)
strictly

positive. As a result, the equilibrium point
(x∗, y∗, z∗)T is a saddle point. So, it’s an
unstable equilibrium point. ■
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The different variations in population size
over time are summarized in the chronicle
(Figure 3) below, which illustrates the different
evolutions of populations subjected to such
interactions in their environment. For the fol-

Figure 3: Growth model of May-Leonard’s three
competitors.

lowing parameters {a = 1.9; b = 0.7} and initial
densities (x0 = 5; y0 = 4; z0 = 3), we obtain the
graph on which we can see the different density
variations of each competitor over time. The
behavior of the three competitors is described as
follows: for the selected values, we find that for
a certain period species x seem to be the only
survivor. Then, suddenly, the density of species
y dominates that of species x. After a while, it
is species y that gives way to species z, which
will also give way to species x. And the cycle
continues.

2.3 Prey-predator models of three
species

2.3.1 Two preys for one predator
Consider a model consisting of two populations of
preys, one of density x and the other of density
y. The third population of density z is a predator
that exerts its predation on the two preys popu-
lations. These preys are competing for the same
resource, [13], [19]. We can find several examples
of species with a diversified food source. In the
given example below, we have rabbit and damson
which are herbivores and feed mainly on grasses,
leaves, young shoots and fruits they find in their
environment. Also, we have Leptailurus-serval, a
common predator to both preys.
The above described interactions can be graphi-
cally summarized as follows, (Figure 5) on which
we can see that the species of density z hunts
two competing populations of densities x and
y. The system of differential equations of the

Figure 4: Example of a food chain in nature. (Im-
ages, Planet Animals).

z

y

x

pre
dat

ion

predation

c
o
m

p
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t
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Figure 5: Diagram of interactions between one
predator and two preys.

Lotka-Volterra type that describes the compe-
tition and predation interactions between these
three species can be described by the following
expression:

dx
dt = x(1− x− y − a z),
dy
dt = y(1− b x− y − z),
dz
dt = z(−1 + c1 x+ c2 y − c3 z).

(22)

The parameters a, b, c1, c2 and c3 are all strictly
positive and initial population densities are all
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positive. In this model, a is the predation rate
of the predator z on the prey x and b is the
competition rate between the two preys x and
y. Furthermore, c1 and c2 are the assimilation
coefficients of preys x and y by the predator z re-
spectively. These are the essential biomasses that
the predators use to increase their physical con-
dition and population density. Finally, c3 is the
rate of competition within the predator popula-
tion. Studying the model (22), we get four equi-
librium points: (0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T and
the positive equilibrium point E = (x∗, y∗, z∗)T

with

x∗ =
c2 + a− 1− ac2

c2 + c3 + ac1 − c1 − abc2 − bc3
, (23)

y∗ =
1 + ab+ abc2 − c2

c2 + c3 + ac1 − c1 − abc2 − bc3
, (24)

z∗ =
c2 + b− bc2 − 1

c2 + c3 + ac1 − c1 − abc2 − bc3
. (25)

These components are subject to the following
positive conditions.


c2 + a > 1 + ac2
1 + ab+ abc2 > c2
c2 + b > 1 + bc2
c2 + c3 + ac1 > c1 + abc2 + bc3

(26)

or


c2 + a < 1 + ac2,

1 + ab+ abc2 < c2,

c2 + b < 1 + bc2,

c2 + c3 + ac1 < c1 + abc2 + bc3.

(27)

Note that parameters a and b are chosen so that
z∗ > 0.
Let’s put N1 = 2x∗+y∗+az∗, N2 = 2y∗+bx∗+z∗

and

π1 = (2 + b)x∗ + 3y∗ + (1 + a+ 2c3) z
∗,

π2 = 1 + c1 x
∗ + c2 y

∗,

π3 = 2(1 +N1N2)(1 + 2c3z
∗) + 2bx∗y∗

+ (1 + 2c3z
∗ +N2)(a

2
11 + c2y

∗z∗)

+ (1 + 2c3z
∗ +N1)(a

2
22 + ac1x

∗z∗)

+ 2(N1 +N2)(c1x
∗ + c2z

∗)

+ (N1 +N2)a
2
33 + (c1 + abc2)x

∗y∗z∗,

π4 = 2(N1 +N2)(1 + 2c3z
∗) + 2a233

+ 2(1 +N1N2)(c1x
∗ + c2z

∗) + (N1 +N2)bx
∗y∗

+ (1 + c1x
∗ + c2z

∗)(a222 + ac1x
∗z∗)

+ (1 + c1x
∗ + c2z

∗)(a211 + c2y
∗z∗),

π5 = ac1N2 + c2N1y
∗z∗ + (1 +N1N2)(1 + 2c2z

∗)

+ (N1 +N2 + bx∗y∗)(c1x
∗ + c2y

∗),

π6 = (N1 +N2 + bx∗y∗)(1 + 2c2z
∗)

+ (1 +N1N2)(c1x
∗ + c2y

∗)

+ ac1 + c2y
∗z∗ + (c1 + abc2)x

∗y∗z∗.

Thus, we have the following proposition

Proposition 2.2 System (22) of two preys and
one predator has:

- the equilibrium point (0, 0, 0)T which is an
unstable saddle point.

- the equilibrium point (1, 0, 0)T which is stable
if c1 < 1 < b and unstable otherwise.

- the equilibrium point (0, 1, 0)T which is sta-
ble, if c2 < 1 and unstable otherwise.

- the equilibrium point (x∗, y∗, z∗)T which is
locally asymptotically stable if following in-
equalities are satisfied: π1 > π2, π3 > π4,
π5 > π6.

Proof: The Jacobian matrix of the sys-
tem (22) is given by the following expres-
sion:

Jac(f)(E) =

(
A11 −x∗ −a x∗

−b y∗ A22 −y∗

c1 z
∗ c2 z

∗ A33

)
. (28)

with

A11 = 1− 2x∗ − y∗ − a z∗, (29)

A22 = 1− 2 y∗ − b x∗ − z∗, (30)

A33 = −1 + c1 x
∗ + c2 y

∗ − 2c3z
∗. (31)

The Jacobian matrix at equilibrium point
(0, 0, 0)T is

Jac(f)(0, 0, 0)T =

(
1 0 0
0 1 0
0 0 −1

)
, (32)

and its eigenvalues are 1 and -1. Then,
(0, 0, 0)T is an unstable equilibrium point.
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Also, the Jacobian matrix at equilibrium
point (1, 0, 0)T is

Jac(f)(1, 0, 0)T =

( −1 −1 −a
0 1− b 0
0 0 −1 + c1

)
,

(33)
and its eigenvalues are -1, 1 - b and −1+c1.
If c1 < 1 < b then the equilibrium point
(1, 0, 0)T is stable. Otherwise, (1, 0, 0)T is an
unstable equilibrium point. The Jacobian
matrix at equilibrium point (0, 1, 0)T is

Jac(f)(0, 1, 0)T =

(
0 0 0
−b −1 −1
0 0 c2 − 1

)
, (34)

and its eigenvalues are 0, -1 and c2 − 1.
Then, if c2 < 1, the equilibrium point
(0, 1, 0)T is a stable equilibrium point. Oth-
erwise, (0, 1, 0)T is an unstable equilibrium
point.

In addition, we verify that equilibrium
point E = (x∗, y∗, z∗)T is locally asymptot-
ically stable under certain conditions us-
ing Routh-Hurwitz criterion. Let’s rewrite
the Jacobian matrix at equilibrium point
E = (x∗, y∗, z∗)T in the following form.

Jac(f)(x∗, y∗, z∗)T =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
, (35)

the characteristic polynomial of
Jac(f)(x∗, y∗, z∗)T is

P (X) = X3 + λ2X
2 + λ1X + λ0, (36)

with

λ2 = −(a11 + a22 + a33),

λ1 = a11a22 + a11a33 + a22a33
− a12a21 − a23a32 − a13a31,

λ0 = a13a31a22 + a23a32a11 + a12a21a33
− a11a22a33 − a12a23a31 − a13a21a32,

according to the Routh-Hurwitz criterion,
(x∗, y∗, z∗)T is stable if λ2 > 0, λ2 λ1 > λ0

and λ0 > 0. We put N1 = 2x∗ + y∗ + az∗ and
N2 = 2y∗+bx∗+z∗. By calculation, we obtain
the conditions below.

λ2 > 0 ⇒

(2 + b)x∗ + 3y∗ + (1 + a+ 2c3) z
∗ > 1 + c1 x

∗ + c2 y
∗

then,

⇒ π1 > π2,

moreover,

λ2 λ1 − λ0 = 2(1 +N1N2)(1 + 2c3z
∗)

+ (1 + 2c3z
∗ +N2)(a

2
11 + c2y

∗z∗)

+ (1 + 2c3z
∗ +N1)(a

2
22 + ac1x

∗z∗)

+ 2(N1 +N2)(c1x
∗ + c2z

∗) + 2bx∗y∗

+ (N1 +N2)a
2
33 + (c1 + abc2)x

∗y∗z∗

−
(
2(N1 +N2)(1 + 2c3z

∗) + 2a233

+ 2(1 +N1N2)(c1x
∗ + c2z

∗)

+ (1 + c1x
∗ + c2z

∗)(a222 + ac1x
∗z∗)

+ (1 + c1x
∗ + c2z

∗)(a211 + c2y
∗z∗)

+ (N1 +N2)bx
∗y∗
)
,

then λ2 λ1 > λ0 if π3 > π4. In addition
we have following condition, λ0 > 0 if

(1 +N1N2)(1 + 2c2z
∗)

+ (N1 +N2 + bx∗y∗)(c1x
∗ + c2y

∗)

+ ac1N2 + c2N1y
∗z∗

>
(
(N1 +N2 + bx∗y∗)(1 + 2c2z

∗)

+ (1 +N1N2)(c1x
∗ + c2y

∗)

+ ac1 + c2y
∗z∗ + (c1 + abc2)x

∗y∗z∗
)
.

that is to say π5 > π6. Then, the equi-
librium point (x∗, y∗, z∗)T is asymptotically
stable if the above conditions are satisfied.
■

The following chronicle (Figure 6), summa-
rizes variations in populations size over the
time. We choose following data for the model
{a = 0.4; b = 0.5; c1 = 0.2; c2 = 1.5; c3 = 0.5}
with the initial densities (x0 = 2; y0 = 3; z0 = 3),
we obtain the graph on which we can see the
different variations in the density of each popula-
tion over time. The behavior of the three species
is described as follows: First, the densities of all
three populations decline over a period of time.
Then, densities fluctuate over a period of time.
Finally, they remain stable from t = 20. Note
that this stability is a function of the model
parameters.
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Figure 6: Growth model of two prey for one
predator.

2.3.2 Super-predator, predator and prey

model

Consider a model consisting of a prey popula-
tion of density x, a food resource for a preda-
tor population of density y, which is also a food
resource for a super predator population of den-
sity z, so that we have a food chain also called
a three-level trophic chain, [13]. In the aquatic
environment, for instance, the great white shark
commonly preys on large fish like tuna, as well as
various mammals and ceteceans. Tuna can feed
on small fish such as scomber and many others
(mackerel, sardines). The above interactions can
be summarized by figure below, (Figure 8).
The system of Lotka-Volterra type differential

equations that describes competition and preda-
tion interactions between these three species can
be described by the following expression


dx
dT = x(r1 − ay),
dy
dT = y(−r2 + b x− cz),
dz
dT = r3z(1− z

K ) + d yz.

(37)

The parameters are all strictly positive, as the
initial population densities. The super predator
has a logistic growth with a limiting capacity of
the environment noted K.

In this model, for any j ∈ {1, ..., 3}, rj is the
growth rate of the index species. In addition, a
and c are the predation rates of the predator on
the prey respectively of the super predator on the
predator. Then, b is the assimilation coefficient
of the prey x by the predator y and d that of the
predator y by the super predator z. To reduce
the number of parameters, we use the following

Figure 7: Example of a food chain in nature. (Im-
ages, Monde Animals).

z y x
predation prddation

Figure 8: Diagram of interactions between the
three species, food chain.

variable changes:

t = r3T, u = x, v = y, w =
z

K
,

α1 =
r1
r3
, α2 =

a

r3
, β3 =

r2
r3
, β1 =

r2
r3
,

β2 =
b

r3
, β3 =

cK

r3
, γ =

d

r3
,

then, the system (37) takes the following form
du
dt = u(α1 − α2v),
dv
dt = v(−β1 + β2u− β3w),
dw
dt = w(1− w + γv).

(38)

Studying the model (38), we get two equilibrium
points: the trivial equilibrium point (0, 0, 0)T and

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.17

Thierry Bi Boua Lagui, 
Seydou Traore, Mouhamadou Dosso

E-ISSN: 2766-9823 200 Volume 6, 2024



the positive equilibrium point (u∗, v∗, w∗)T such
that

u∗ =
β1
β2

+
β3
β2

(
1 +

γα1

α2

)
, v∗ =

α1

α2

and w∗ = 1 + γα1

α2
.

Proposition 2.3 System (38) of prey, predator
and super predator has:

- the trivial equilibrium point (0, 0, 0)T which
is a unstable saddle point.

- the equilibrium point (u∗, v∗, w∗)T which is
locally asymptotically stable.

Proof: The Jacobian matrix of the sys-
tem (38) is

Jac(f)(u, v, w)T =

(
a11 −α2 u 0

−β2 v a22 −β3 v
0 γ w a33

)
.

(39)

a11 = α1 − α2 v, (40)

a22 = −β1 + β2u− β3w, (41)

a33 = 1− 2w + γ v. (42)

(i) The Jacobian matrix of the system
(38) at equilibrium point (0, 0, 0)T is

Jac(f)(0, 0, 0) =

(
α1 0 0
0 −β1 0
0 0 1

)
, (43)

and its eigenvalues are α1, −β1 and 1. Since
the eigenvalues α1 and 1 are positive and
the eigenvalue −β1 is negative, thus, the
equilibrium point (0, 0, 0)T is an unstable
saddle point.
(ii) The Jacobian matrix of the system (38)
at the equilibrium point (u∗, v∗, w∗)T is

Jac(f)(u∗, v∗, w∗) =

(
0 −α2u

∗ 0
β2 v

∗ 0 −β3 v
∗

0 γ w∗ −w∗

)
,

(44)
and its characteristic polynomial is given
by

ϱ(λ) = λ3 + w∗ λ2 + (α2β2u
∗ v∗ + α2 γ v

∗w∗)λ

+ α2β2 u
∗ v∗w∗, (45)

assuming that

a1 = w∗, (46)

a2 = α2β2u
∗ v∗ + α2 γ v

∗w∗, (47)

a3 = α2β2 u
∗ v∗w∗, (48)

according to Routh Hurwitz criterion, the
equilibrium point (u∗, v∗, w∗)T is locally
asymptotically stable if the following in-
equalities are satisfied.

a1 > 0,

a1 a2 − a3 > 0,

a3 > 0.

It is easy to see that a1 and a3 are positive
and we have

a1 a2 − a3 = α2β2u
∗ v∗w∗ + α2 γ v

∗ (w∗)2

− α2β2 u
∗ v∗w∗, (49)

a1 a2 − a3 = α2 γ v
∗ (w∗)2 > 0. (50)

Then, the Routh Hurwitz’s criterion is sat-
isfied. Therefore, the equilibrium point
(u∗, v∗, w∗)T is locally asymptotically stable.
■
The chronicles (Figure 9), below summarize the
variations in population size over time. We
choose following data for the model {r1 =
1.09; r2 = 0.71; r3 = 1; a = 0.017; b = 0.2; c =
0.11; d = 0.78; K = 2} with the initial densities
(u0 = 230; v0 = 40;w0 = 20), we obtain the graph
Figure 9 on which we can see the different varia-
tions in the density of each population over time.
The behavior of the three species is described as
follows: We can see that the population densities
of the prey, predator and superpredator oscillate
slightly aperiodically and later converge on a sta-
ble state (Figure 9). When the value of the pre-
dation rate increases {a = 0.41; c = 0.5}, (Figure
9b) and {a = 0.52725; c = 0.5}, (Figure 9c), we
notice a progressive decrease in population den-
sities until extinction.

2.3.3 Prey-predator model with prey

harvesting
We study a system consisting of a prey popula-
tion which is a food resource for a natural preda-
tor population. Furthermore, it is assumed that
the prey population is continuously harvested by
harvesting agents, creating competition for prey
between harvesters and natural predator, which
is not harvested. The authors in [8] have stud-
ied the prey-predator model with prey harvest-
ing in order to determine the biomass of the prey
stock to be preserved to ensure the regeneration
of this resource. Indeed, prey are generally ex-
ploited (fished or hunted) for commercial pur-
poses or to satisfy the food needs of the agents
that exploit them. However, if these actions go
unchecked, prey can disappear very quickly. This
could threaten biodiversity.
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(a) Population dynamics with
a = 0.017 and c = 0.11

(b) Population dynamics with
a = 0.41 and c = 0.5

(c) Population dynamics with
a = 0.52725 and c = 0.5

Figure 9: Prey, predator and super-predator
growth model.

The dynamic model of interactions between
prey, predators and harvesting agents, based on a
modified Leslie-Gower version and a Holling type
II functional response is described by the follow-

ing expression:
dx
dt = x(r1 − a x− b y

x+k1
)−mq x z,

dy
dt = y(r2 − c y

x+k2
),

dz
dt = λz(pmqx− d).

(51)

In this model, the parameters are all strictly pos-
itive, the initial population densities are also pos-
itive and the super-predator has logistic growth.
In addition, x and y are the prey and predator
densities. For any j ∈ {1, ..., 2}, rj is the growth
rate of the species in question. Moreover, the pa-
rameter b represents the predation rate, i.e, the
maximum value of the rate of extermination of
the prey x by the natural predator y, and c is
the maximum value of the rate of extermination
of the individual y. In this model, the param-
eters are all strictly positive, initial population
densities are positive, super predator has logis-
tic growth. In addition, x and y are the prey
and predator densities and for all j ∈ {1, ..., 2},
rj is the growth rate of the species in question.
Moreover, the parameter b represents the preda-
tion rate i.e, the maximum value of prey x ex-
termination rate by the natural predator y and
c is the maximum value of individual y extermi-
nation rate. The reduction in predators popu-
lation is a consequence of internal competition,
natural mortality and mortality due to resource
scarcity. Parameter a measures the mortality due
to competition between individuals of species x,
and parameters k1 (respectively k2) measure the
protection provided by the environment to prey x
(respectively to predator y). Also, the parameter
z is the effort used to harvest the prey popula-
tion and it depends on several factors: first we
have m, 0 < m < 1, which is the fraction of the
prey stock available and q which is the prey har-
vest factor or prey capture factor. The parameter
p represents the constant price per unit biomass
of prey harvested and d is the cost generated by
the constant harvest of prey per unit effort and
λ is the rigidity parameter measuring the effort
distribution of the reaction.

The above interactions can be summarized in
the figure below, (Figure 10).

Studying the model (51), we get five triv-
ial equilibrium points: (0, 0, 0)T , ( r1a , 0, 0)

T ,

(0, r2 k2

c , 0)T and (x∗, y∗, 0)T which exists if r2
√
s+

r1r2c > r22b+ r2ack1, with

x∗ =
r2
√
s− r22b+ r1r2c− r2ac(k1 − 2k2)

2r2ac
− k2,

y∗ =
r2
√
s− r22b+ r1r2c− r2ac(k1 − 2k2)

2ac2
, (52)
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z

y

x

harvesting

pred
ation

Figure 10: Diagram of interactions between prey,
predators and harvesting agents.

Figure 11: Example of a food chain in nature.
(Images, Planet Animals).

we have also the equilibrium point (x∗, 0, z∗)T

which exists for r1pmq > ad, where

x∗ =
d

pmq
, y∗ =

r1pmq − ad

pm2q2
(53)

and positive equilibrium (x∗, y∗, z∗)T exixts for

r1 >
ad
pmq +

br2(d+k2pmq)
c(d+k1pmq) , with

x∗ =
d

pmq
, y∗ =

r2
c
(x∗ + k2) and

z∗ = 1 +
1

mq

(
r1pmq − ad

pmq
− br2(d+ k2pmq)

c(d+ k1pmq)

)
.

The following proposition gives the conditions
for stability of the equilibrium points.

Proposition 2.4 System (51) of prey-predator
model with prey harvesting has:

- the trivial equilibrium points (0, 0, 0) and
(x∗, 0, z∗)T which are all unstable.

- the equilibrium point (0, r2 k2

c , 0)T which is

stable, if r1 <
bk2r2
ck1

.

- the equilibrium point (x∗, y∗, 0)T which is sta-

ble, if r1 < 2a x∗ + bk1y∗

(x∗+k1)2
and pmqx∗ < d.

- the equilibrium point (x∗, y∗, z∗)T which is lo-
cally asymptotically stable if
r2 + 2ax∗ + bk1y∗

(x∗+k1)2
+mqz∗ > r1 + r2.

Proof: We determine the Jacobian ma-
trix of the system (51) at each equilibrium
point and examine the sign of its eigenval-
ues. The Jacobian matrix is given by the
following expression.

Jac(f)(x, y, z) =

 a11 − bx
x+k1

−mq x
cy2

(x+k2)2
a22 0

λpmqz 0 a33

 ,

(54)
with

a11 = r1 − 2a x−mqz − bk1y

(x+ k1)2
, (55)

a22 = r2 −
2cy

x+ k2
, (56)

a33 = λ(pmqx− d). (57)

(i) The Jacobian matrix at the equilibrium
points (0, 0, 0) and ( r1a , 0, 0) are respec-
tively given by:

Jac(f)(0, 0, 0)T =

(
r1 0 0
0 r2 0
0 0 −λd

)
, (58)

Jac(f)(
r1
a
, 0, 0)T =

( −r1 0 0
0 r2 0
0 0 λ(pmqr1

a − d)

)
.

(59)

The eigenvalues of Jac(f)(0, 0, 0)T are r1,
r2 and −λd. Since r1, r2 are positive
and −λd is negative then, (0, 0, 0)T is
an unstable equilibrium point. Simi-
larly, ( r1a , 0, 0)

T is an unstable equilib-
rium point.
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(ii) The Jacobian matrix at equilibrium

points (0, r2 k2

c , 0)T and (x∗, y∗, 0)T are re-
spectively given by:

Jac(f)(0,
r2 k2
c

, 0)T =

 r1 − bk2r2
ck1

0 0

− r22
c −r2 0
0 0 −λd


(60)

and

Jac(f)(x∗, y∗, 0)T =

 b11 − bx∗

x∗+k1
−mq x∗

r22
c b22 0
0 0 b33

 ,

(61)
with

b11 = r1 − 2a x∗ − bk1y
∗

(x∗ + k1)2
, (62)

b22 = −r2, (63)

b33 = λ(pmqx∗ − d), (64)

The eigenvalues of Jac(f)(0, r2 k2

c , 0)T are

r1 − bk2r2
ck1

, −r2 and −λd. If r1 < bk2r2
ck1

then, the equilibrium point (0, r2 k2

c , 0)T

is stable. Otherwise it is an unstable
equilibrium point.

The equilibrium point (x∗, y∗, 0)T is un-
stable if pmqx∗ > d. Furthermore,
let’s determine the characteristic poly-
nomial of the Jacobian matrix at the
equilibrium point (x∗, y∗, 0)T . We have

ϱ(X) = (λ(pmqx∗ − d)−X)
(
X2 + κ1X + κ0

)
,

(65)
with

κ1 = r2 −
(
r1 − 2a x∗ − bk1y

∗

(x∗ + k1)2

)
, (66)

κ0 = −r2

(
r1 − 2a x∗ − bk1y

∗

(x∗ + k1)2

)
. (67)

The equilibrium point (x∗, y∗, 0)T is sta-
ble if following inequalities are satis-
fied. 

λ(pmqx∗ − d) < 0

κ1 > 0

κ0 > 0.

(68)

Solving these equations, we have the
following solutions.

pmqx∗ < d and r1 < 2a x∗ +
bk1y

∗

(x∗ + k1)2
.

(69)

Moreover, the Jacobian matrix at the
equilibrium point (x∗, 0, z∗)T is

Jac(f)(x∗, 0, z∗)T =

 B11 B12 −d
p

0 r2 0
B31 0 0

 ,

(70)
with

B11 = − ad

pmq
, (71)

B12 = − bd

pmqk1 + d
, (72)

B31 = λ(
r1pmq − ad

mq
). (73)

one of its eigenvalues, r2 is positive,
then equilibrium (x∗, y∗, 0)T is unsta-
ble. We check that positive equilib-
rium (x∗, y∗, z∗)T is locally asymptoti-
cally stable using Routh-Hurwitz crite-
rion. Let’s rewrite the Jacobian matrix
at the equilibrium point (x∗, y∗, z∗)T in
the following form.

Jac(f)(x∗, y∗, z∗)T =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
,

(74)
with

a11 = r1 − 2ax∗ − bk1y
∗

(x∗ + k1)2
, a21 = −r22

c
,

a13 = −mqx∗, a12 =
bx∗

x+ k1
,

a22 = −r2, a23 = 0, a32 = 0,

a31 = λpmqz∗, a33 = λ(pmqx∗ − d).

The characteristic polynomial of
Jac(f)(x∗, y∗, z∗)T is

P (X) = X3 + ρ2X
2 + ρ1X + ρ0, (75)

with

ρ2 = r2 − r1 + 2ax∗ +
bk1y

∗

(x∗ + k1)2
+mqz∗,

ρ0 = λpm2q2r2x
∗z∗,

ρ1 = −r1r2 + 2r2ax
∗ +

r2bk1y
∗

(x∗ + k1)2

+ r2mqz∗ + λpm2q2x∗z∗ +
r22bx

∗

c(x∗ + k1)
,

according to the Routh-Hurwitz cri-
terion, (x∗, y∗, z∗)T is stable if, ρ2 >

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.17

Thierry Bi Boua Lagui, 
Seydou Traore, Mouhamadou Dosso

E-ISSN: 2766-9823 204 Volume 6, 2024



0, ρ2 ρ1 > ρ0, ρ0 > 0. Let’s put M=r2 +
2ax∗+ bk1y∗

(x∗+k1)2
+mqz∗. A calculation gives

the following conditions: ρ2 > 0 ⇒
M − r1 > 0 and ρ0 ≥ 0 Further-
more, ρ2ρ1− ρ0 > 0 ⇒ (r2(M − r1)+

λpm2q2x∗z∗)(M − r1 − r2) +
r22bx

∗

c(x∗+k1)
(M −

r1) > 0. Finally, the positive equilibrium
(x∗, y∗, z∗)T is locally asymptotically sta-
ble if M > r1 + r2.

■
The evolution of populations over time is summa-
rized in the following figures, (Figure 12).
We choose following data for the model {r1 =
2.175; r2 = 0.78; a = 0.01375; b = 0.16; c =
2.98; k1 = 100; k2 = 70; λ = 11.75; d =
0.387; p = 0.1789; m = 0.016} and we choose
different values for q to see the effect of this factor,
{q = 4.19; q = 7.0; q = 9.37; q = 9.40} with
the initial densities (x0 = 251; y0 = 51; z0 = 30).
We obtain the graphs (Figure 12), on which we
can see the different variations in the density of
each population over time. The behavior of the
three competitors is described as follows: We ob-
serve that prey and predator population densities
and harvest rates converge towards their stable
states (xstable ≃ 49; ystable ≃ 33; zstable ≃ 31)
after a certain period of fluctuation Figure 12a.
But, as this stability is conditional, it can also
be broken for certain parameter values. In fact,
when the factor q increases, the time it takes for
the prey to reproduce increases, we can see it on
the graphs Figure 12b and Figure 12c. So, when
q reaches 9.40, the prey becomes extinct and so
does the system. That is shown by Figure 12d.

(a) Population dynamics with
q = 4.19

(b) Population dynamics with
q=7.0

(c) Population dynamics with
q = 9.37

(d) Population dynamics with
q = 9.4

Figure 12: Prey-predator growth model with prey
harvesting.
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3 Prey-predator and super
predator model including
competition, self defense and
infected preys

3.1 Presentation of the model
We are interested in the demographic dynamics of
prey and predators in a system were Some prey
defend themselves vigorously against predators,
often causing enormous damage to the predator
population. Also the consumption of certain in-
fected prey can lead to disease in the predator
population, resulting in high reduction rates. A
mathematical model following the assumptions
and interactions described above is represented
by the diagram ( Figure 13) below.

z

w

upredation

predation

pr
ed

at
io
n

self defense

se
lf
de

fe
ns
e

competition

Figure 13: Schematic of prey-predator interac-
tions.

There are examples in nature, Figure 14 illus-
trating this type of trophic allowing us to describe
these prey-predator relationships.

du

dt
= r1u

(
1− u

k

)
− a1uw − a2uz − τu,

dw

dt
= r2w

(
1− w

k

)
+ b1uw − b2wz − αuw,

dz

dt
= r3z

(
1− z

k

)
+ c1uz + c2wz − βuz − γwz.

(76)
The parameter ri for all i = 1, 2 is the growth
rate of the corresponding species. The initial den-
sities are all positive. In this model, ai, for all
i = 1, 2 and b2 are the predation rates of the
predators and b1, c1 and c2 are the coefficients of
assimilation of the preys by the predators. k is the
carying capacity and τ is infected prey rate. α, β
and γ are predator reduction rate due to prey de-
fense in group and consumption of infected prey.

Figure 14: Example of a food chain in nature.
(Images, Planet Animals).

The parameters α, β and γ can generally be a
factor in increasing the mortality rate of preda-
tors, i.e. all the possible negative effects that the
prey can exert on its predator. Whether it’s self-
defense in a group, strategies to escape predators
(indirectly inflicting a loss of energy, time and
strength), or negative effects due to the consump-
tion of infected prey.
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3.2 Boundaries conditions of solutions
of system (76)

Definition 3.1 An equilibrium point E∗ =
(u∗, w∗, z∗)T of system (76) is said to be non-
trivial or interior or again positive, if it belongs
to the strictly positive cone Int(R3

+).

Definition 3.2 [19] A solution of system (76) is
said to be ultimately bounded with respect to R3

+,
if there exists a compact region A of R3

+ and a
finite time T such that, for any initial condition
(t0, u0, w0, z0)

T ∈ R+ × R3
+, we have (u,w, z)T ∈

A for all t > T .

Definition 3.3 [20] The subset Ω of R3
+ is a pos-

itively invariant region for the solutions of the
problem (76), if any solution (u,w, z)T whose ini-
tial condition (u0, w0, z0)

T is in Ω satisfies

(u,w, z)T ∈ Ω, ∀t > 0. (77)

Theorem 3.1 Consider the set Ω defined by

Ω =



(u,w, z)T ∈ R3
+ such that

0 ≤ u ≤ δ1,

0 ≤ w ≤ δ2,

0 ≤ z ≤ δ3,


(78)

where

δ1 = k, δ2 = k
(r2 + b1δ1)

r2
and

δ3 =
k(r3 + c1 δ1 + c2 δ2)

r3
.

Then,

i) The set Ω is a positively invariant region.

ii) All solutions of (76) with initial conditions
in Ω, are bounded and enter the attraction
region Ω.

iii) All solutions of system (76) with positive ini-
tial conditions are uniformly bounded.

Proof:
Let us prove for each equation of the sys-

tem (76).
From the first equation of system (76), we
have

du

dt
= r1u

(
1− u

k

)
− a1uw − a2uz − τu,

u(0) = u01 ≥ 0,

(79)

and with −(a1uw + a2uz + Iu) ≤ 0, we have
du

dt
≤ r1u

(
1− u

k

)
u(0) = u01 ≥ 0

(80)

Then, according to Lemma 2.1,

lim sup
t−→∞

u(t) ≤ k(≈ δ1). (81)

Therefore, ∀ϵ1 > 0, there exists T > 0 such
that

u(t) ≤ δ1 + ϵ1, ∀ t ≥ T. (82)

Likewise, considering the second equation
of system (76), we have


dw

dt
= r2w

(
1− w

k

)
+ b1uw − b2wz − αuw,

w(0) = w02 ≥ 0,

(83)
and with −b2wz − αuw ≤ 0, we have


dw

dt
≤ r2w

(
1− w

k

)
+ b1uw,

w(0) = w02 ≥ 0,

=⇒

{
dw
dt ≤

(
r2 + b1(δ1 + ϵ1)− r2 w

k

)
w,

w(0) = w02 ≥ 0,
(84)

according to Lemma 2.1

lim sup
t−→+∞

w(t) ≤ k

r2

(
r2 + b1(δ1 + ϵ)

)
(≈ δ2). (85)

Therefore, ∀ϵ2 > 0, there exists T > 0 such
that

w(t) ≤ δ2 + ϵ2 ∀t ≥ T. (86)

We now consider the third equation of sys-
tem (76), we have

dz

dt
= r3z

(
1− z

k

)
+ c1uz + c2wz − βuz − γwz,

z(0) = z03 ≥ 0,

(87)

as −βuz − γwz ≤ 0 and taking ε =
max {ϵ1, ϵ2}, we have ∀t ≥ T > 0,

u(t) ≤ δ1 + ε and w(t) ≤ δ2 + ε,

then we get
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dz

dt
≤ r3z

(
1− z

k

)
+ c1uz + c2wz

z(0) = z03 ≥ 0

=⇒

{
dz
dt ≤

(
r3 + c1(δ1 + ε) + c2(δ2 + ε)− r3 z

k

)
z,

z(0) = z03 ≥ 0.
(88)

According to Lemma 2.1

lim sup
t−→+∞

z(t) ≤ k

r3

(
r3 + c1(δ1 + ε) + c2(δ2 + ε)

)
,

(89)
when ε → 0, it turns out that

lim sup
t−→+∞

z(t) ≤ k

r3

(
r3 + c1 δ1 + c2 δ2

)
(≡ δ3). (90)

Furthermore, for all t0 ≥ 0, take X(t0) =(
u(0), w(0), z(0)

)T
with positive components

and let σ(t) = u(t) + w(t) + z(t). Then, by
deriving along the solutions of the system
(76) we have ∀ζ > 0

dσ(t)

dt
+ ζσ(t) ≤ k

4

(
3 +

(ζ − τ)

r1

)
+

k

4

(
(ζ + b1δ1)

r2
+

(ζ + c1δ1 + c2δ2)

r3

)
, (91)

≈ (m),

applying Gronwall’s inequality, we obtain

0 < σ(X(t)) ≤ m

ζ

(
1− e−ζt

)
+ σ(X(t0))e

−ζt,

(92)
then when t −→ +∞ we have

0 < σ(X(t)) ≤ m

ζ
. (93)

The solutions of system (76) are uniformly
bounded for any initial condition X(t0) ≥ 0.
■

3.3 Study of system equilibrium
points

The equilibrium points E∗
j , (j = 0, 1, 2, . . . ) are

the solutions of following equations:{
du
dt = 0; dw

dt = 0; dz
dt = 0. (94)

· The trivial equilibrium point of the system
(76) is E∗

0 = (0, 0, 0)T .

· The semi-trivial equilibrium points of the

system (76) are E∗
1 =

(
k(1− τ

r1
), 0, 0

)T

,

E∗
2 = (0, k, 0)T , E∗

3 = (0, 0, k)T and E∗
4 =

(u∗, w∗, 0)T with

u∗ =
r2k(r1 − τ − a1k)

r1r2 + a1(b1 − α)
,

w∗ =
k(r1r2 + (r1 − τ)(b1 − α))

r1r2 + ka1(b1 − α)
,

and E∗
5 = (u∗, 0, z∗)T with

u∗ =
r3k(r1 − τ − a2k)

r1r3 + a2(c1 − β)
,

z∗ =
k (r1r3 + (r1 − τ)(c1 − β))

r1r3 + ka2(c1 − β)
,

and E∗
6 = (0, w∗, z∗)T with

w∗ =
r3k(r2 − b2k)

r2r3 + kb2(c2 − γ)
,

z∗ =
r2k(r3 + c2 − γ)

r2r3 + kb2(c2 − γ)
.

· The positive equilibrium point of system (76)
is Ē = (ū, w̄, z̄)T with

ū =
k(r1 − a1A− a2C − τ)

r1 + ka1B + ka2D
,

w̄ =
kr3(r2 − kb2) + k(r3(b1 − α)

r2r3 + k2b2(c2 − γ)

− kb2(c1 − β))ū

r2r3 + k2b2(c2 − γ)
,

z̄ = k
(r2r3 + 2k2b2c2 + kr2(c2 − γ))

r2r3 + kb2(c2 − γ)

+ k
(2r2(c1 − β) + k(c2 − γ)(c1 − α))ū

r2r3 + kb2(c2 − γ)
,

with

A =
kr3(r2 − kb2)

r2r3 + k2b2(c2 − γ)
,

B =
k(r3(b1 − α)− kb2(c1 − β))

r2r3 + k2b2(c2 − γ)
ū,

C = k
(r2r3 + 2k2b2c2 + kr2(c2 − γ))

r2r3 + kb2(c2 − γ)
,

D = k
(2r2(c1 − β) + k(c2 − γ)(c1 − α))

r2r3 + kb2(c2 − γ)
ū.

It’s clear that equilibrium points E∗
2 and E∗

3 exist
because their components are positive and equi-
librium point E∗

1 exists for r1 > τ .
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Lemma 3.1 The equilibrium point E∗
4 exists for

the system (76) if the following hypothesis are sat-
isfied.{

r1 > τ + a1k, r1r2 + ka1b1 > ka1α,

r1r2 + r1b1 + τα > b1τ + r1α,
(95)

or{
r1 < τ + a1k, r1r2 + ka1b1 < ka1α,

r1r2 + r1b1 + τα < b1τ + r1α.
(96)

Proof: As z∗ = 0 in E∗
4 , the system (76)

is reduce to the following system
du

dt
= r1u

(
1− u

k

)
− a1uw − τu,

dw

dt
= r2w

(
1− w

k

)
+ b1uw − αuw,

(97)
and applying (94) we get

0 = r1 −
r1u

k
− a1w − τ,

0 = r2 −
r2w

k
+ (b1 − α)u,

⇒


u∗ = k − ka1w

∗

r1
− kτ

r1
,

w∗ = k +
(b1 − α)

r2
u∗,

⇒


u∗ =

r2k(r1 − τ − a1k)

r1r2 + ka1(b1 − α)
,

w∗ = k +
(b1 − α)

r2
u∗,

for biological reasons, E∗
4 exists if its com-

ponents are positive. That lead to u∗ > 0
and w∗ > 0 then,

r2k(r1 − τ − a1k)

r1r2 + ka1(b1 − α)
> 0

and
k(r1r2 + (r1 − τ)(b1 − α))

r1r2 + ka1(b1 − α)
> 0,

it follows{
r1 > τ + a1k, r1r2 + ka1b1 > ka1α,

r1r2 + r1b1 + τα > b1τ + r1α,
(98)

or{
r1 < τ + a1k, r1r2 + ka1b1 < ka1α,

r1r2 + r1b1 + τα < b1τ + r1α.
(99)

■

Lemma 3.2 The equilibrium point E∗
5 exists for

the system (76) if the following hypothesis are sat-
isfied.{

r1 > τ + a2k, r1r3 + ka2c1 > ka2β,

r1r3 + r1c1 + τβ > c1τ + r1β,
(100)

or{
r1 < τ + a2k, r1r3 + ka2c1 < ka2β,

r1r3 + r1c1 + Iβ < c1τ + r1β.
(101)

Proof: As w∗ = 0 in E∗
5 , the system (76) is

reduce to following system
du

dt
= r1u

(
1− u

k

)
− a2uz − τu,

dz

dt
= r3z

(
1− z

k

)
+ c1uz − βuz,

(102)

and applying (94) we get
0 = r1 −

r1u

k
− a2z − τ,

0 = r3 −
r3z

k
+ (c1 − β)u,

⇒


u∗ = k − ka2z

∗

r1
− kτ

r1
,

z∗ = k +
(c1 − β)

r3
u∗,

⇒


u∗ =

r3k(r1 − I − a2k)

r1r3 + ka2(c1 − β)
,

z∗ = k +
(c1 − β)

r3
u∗,

for biological reasons, E∗
5 exists if its com-

ponents are positive. That lead to u∗ > 0
and z∗ > 0 then,

r3k(r1 − τ − a2k)

r1r3 + ka2(c1 − β)
> 0

and
k (r1r3 + (r1 − τ)(c1 − β))

r1r3 + ka2(c1 − β)
> 0,

it follows{
r1 > τ + a2k, r1r3 + ka2c1 > ka2β,

r1r3 + r1c1 + τβ > c1τ + r1β,
(103)

or {
r1 < τ + a2k, r1r3 + ka2c1 < ka2β,

r1r3 + r1c1 + τβ < c1τ + r1β.
(104)

■
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Lemma 3.3 The equilibrium point E∗
6 exists for

the system (76) if the following hypothesis are sat-
isfied.
r2 > b2k, r2r3 + kb2c2 > kb2γ, r3 + c2 > γ,

or

r2 < b2k, r2r3 + kb2c2 < kb2γ, r3 + c2 < γ.
(105)

Proof: As u∗ = 0 in E∗
6 , the system (76)

is reduce to following system
dw

dt
= r2w

(
1− w

k

)
− b2wz,

dz

dt
= r3z

(
1− z

k

)
+ c2wz − γwz,

(106)

and applying (94) we get
0 = r2 −

r2w

k
− b2z,

0 = r3 −
r3z

k
+ (c2 − γ)w,

⇒


w∗ = k − kb2z

∗

r2
,

z∗ = k +
(c2 − γ)

r3
w∗,

⇒


w∗ =

r3k(r2 − b2k)

r2r3 + kb2(c2 − γ)
,

z∗ =
r2k(r3 + c2 − γ)

r2r3 + kb2(c2 − γ)
,

for biological reasons, E∗
6 exists if its com-

ponents are positive. That lead to w∗ > 0
and z∗ > 0 then,

r3k(r2 − b2k)

r2r3 + kb2(c2 − γ)
> 0,

and
r2k(r3 + c2 − γ)

r2r3 + kb2(c2 − γ)
> 0,

it follows
r2 > b2k, r2r3 + kb2c2 > kb2γ, r3 + c2 > γ,

or

r2 < b2k, r2r3 + kb2c2 < kb2γ, r3 + c2 < γ.
(107)

■

Lemma 3.4 The positive equilibrium point Ē ex-
ists for the system (76) if the following hypothesis
are satisfied.

r2 > b2k, c2 > γ, b1 > α, c1 > β,

r1 > a1A+ a2C + τ and

r3r2 + r3b1 + b2βū > r3kb2 + r3α+ b2c1ū.

Proof: Using the system (76) and apply-
ing (94) we get



r1

(
1− u

k

)
− a1w − a2z − τ = 0,

r2

(
1− w

k

)
+ (b1 − α)u− b2z = 0,

r3

(
1− z

k

)
+ (c1 − β)u+ (c2 − γ)w = 0,

⇒



u =
k

r1
(r1 − a1w − a2z − τ) ,

w =
k

r2
(r2 + (b1 − α)u− b2z) ,

z =
k

r3
(r3 + (c1 − β)u+ (c2 − γ)w) ,

and using third and second equation we get

w = −k2b2
r2r3

(r3 + (c1 − β)u+ (c2 − γ)w)

+
k

r2

(
r2 + (b1 − α)u

)
,

⇒ w̄ =
k(r3(b1 − α)− kb2(c1 − β))ū

r2r3 + k2b2(c2 − γ)

+
kr3(r2 − kb2)

r2r3 + k2b2(c2 − γ)
,

then,

z =
k

r3
(r3 + (c1 − β)u+ (c2 − γ)w) ,

⇒ z̄ = k
(r2r3 + 2k2b2c2 + kr2(c2 − γ))

r2r3 + kb2(c2 − γ)

+ k
(2r2(c1 − β) + k(c2 − γ)(c1 − α))ū

r2r3 + kb2(c2 − γ)
,

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.17

Thierry Bi Boua Lagui, 
Seydou Traore, Mouhamadou Dosso

E-ISSN: 2766-9823 210 Volume 6, 2024



then let

A =
kr3(r2 − kb2)

r2r3 + k2b2(c2 − γ)
,

B =
k(r3(b1 − α)− kb2(c1 − β))

r2r3 + k2b2(c2 − γ)
ū,

C = k
(r2r3 + 2k2b2c2 + kr2(c2 − γ))

r2r3 + kb2(c2 − γ)
,

D = k
(2r2(c1 − β) + k(c2 − γ)(c1 − α))

r2r3 + kb2(c2 − γ)
ū,

we get

u =
k

r1
(r1 − a1w − a2z − τ) ,

⇒ ū =
k(r1 − a1A− a2C − τ)

r1 + ka1B + ka2D
,

for biological reasons, ū exists if its com-
ponents are positive. That lead to ū > 0,
w̄ > 0 and z̄ > 0. That to say

A > 0, B > 0, C > 0,

D > 0, r1 > a1A+ a2C + τ,

it follows

r2 > b2k, c2 > γ, b1 > α,

c1 > β, r1 > a1A+ a2C + τ,

and r3r2 + r3b1 + b2βū > r3kb2 + r3α+ b2c1ū.

■

3.4 Analysis of the stability of
equilibrium points

We study the stability of equilibrium points of
the system (76) by using the Jacobian matrix of
the system and Routh-Hurwitz criterion.

3.4.1 Local stability of trivial and

semi-trivial equilibrium points
The Jacobian matrix of the system (76) is given
by

Jac(f) =

(
a11 −a1 u −a2 u

(b1 − α) w a22 −b2w
(c1 − β) z c2 z a33

)
,

(108)
where

a11 = r1 −
2 r1
k

u− a1w − a2 z − τ,

a22 = r2 −
2 r2
k

w + (b1 − α) u− b2 z,

a33 = r3 −
2 r3
k

z + (c1 − β) u+ (c2 − γ) w.

Following propositions show behaviour of the
equilibrium points E∗

0 , E
∗
1 , E

∗
2 and E∗

3 .

Proposition 3.1 The equilibrium point E0 of
the system (76) is unstable.

Proof: The Jacobian matrix of the system
(76) at equilibrium point E0 is

Jac(f)(E0) =

(
r1 − τ 0 0

0 r2 0
0 0 r3

)
, (109)

the eigenvalues are r1 − τ , r2 and r3. Since
eigenvalues r2 and r3 are positive, the equi-
librium point E0 is unstable. ■

Proposition 3.2 The equilibrium point E1 of
the system (76) is stable if

τ < r1, r1r2 + kb1r1 + kατ < kαr1 + kb1τ,

and r1r3 + kc1r1 + kβτ < kβr1 + kc1τ.

Proof: The Jacobian matrix of the system
(76) at equilibrium point E1 is

Jac(f)(E1) =

 a11 a12 −a2 k(1−
τ

r1
)

0 a22 0
0 0 a33

 ,

(110)
with

a11 = τ − r1, a12 = −a1 k(1−
τ

r1
),

a22 = r2 + k (b1 − α) (1− τ

r1
),

a33 = r3 + k (c1 − β) (1− τ

r1
),

its eigenvalues are τ−r1, r2+k (b1 − α) (1−
τ

r1
), r3+k (c1 − β) (1− τ

r1
). The equilibrium

point E1 is stable if its eigenvalues are all
negative. A calculation gives the result.

■

Proposition 3.3 The equilibrium point E2 of
the system (76) is unstable if c2 > γ and stable if

r1 < a1 k + τ and
r3
k

+ c2 < γ.

Proof: The Jacobian matrix of the system
(76) at equilibrium point E2 is

Jac(f)(E2) =

(
B11 0 0

(b1 − α) k B22 −b2k
0 0 B33

)
,

(111)
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with

B11 = r1 − a1 k − τ,

B22 = −r2,

B33 = r3 + (c2 − γ) k.

its eigenvalues are r1 − a1 k − τ , −r2,
r3 + (c2 − γ) k are not always of the same
sign. If c2 > γ and r1 > a1 k + τ then, the
eigenvalues r1−a1 k−τ and r3+(c2 − γ) k are
positive. In this case the equilibrium point
E2 is unstable. Otherwise the equilibrium
point E2 is stable if its eigenvalues are all
negative. A calculation gives the result. ■

Proposition 3.4 The equilibrium point E3 of
the system (76) is unstable if r1 > a2 k and
r2 > b2 k and stable if r1 < a2 k and r2 < b2 k.

Proof: The Jacobian matrix of the system
(76) at equilibrium point E3 is

Jac(f)(E3) =

(
r1 − a2 k 0 0

0 r2 − b2 k 0
(c1 − β) k c2 k −r3

)
,

(112)

and its eigenvalues are r1 − a2 k, r2 − b2 k
and −r3. If r1 > a2 k and r2 > b2 k then,
the eigenvalues r1 − a2 k and r2 − b2 k are
positive. In this case the equilibrium point
E3 is unstable. Otherwise the equilibrium
point E3 is stable if its eigenvalues are all
negative. That to say r1 < a2 k and r2 < b2 k.
■

Proposition 3.5 The equilibrium point E4 of
the system (76) is asymptotically stable if the con-
ditions below are satisfied.

r1 (r2 + b1 u
∗) +

(
2 r1
k

u∗ + τ

)(
2 r2
k

w∗ + αu∗
)

+
2r2
k

a1(w
∗)2 > r1

(
2 r2
k

w∗ + αu∗
)
+ r2a1w

∗

+

(
2 r1
k

u∗ + τ

)
(r2 + b1 u

∗) ,

β u∗ + γ w∗ > r3 + c1 u
∗ + c2w

∗

and
2

k
(b1 + r1)u

∗ + αu∗ + r2 + a1w
∗ + τ >

r1 + b1u
∗ +

2α

k
u∗.

Proof: The Jacobian matrix of the system
(76) at equilibrium point E4 is

Jac(f)(E4) =

(
a11 −a1 u

∗ −a2 u
∗

(b1 − α) w∗ a22 −b2w
∗

0 0 a33

)
,

(113)
where

a11 = r1 −
2 r1
k

u∗ − a1w
∗ − τ, (114)

a22 = r2 −
2 r2
k

w∗ + (b1 − α) u∗, (115)

a33 = r3 + (c1 − β) u∗ + (c2 − γ) w∗, (116)

and the characteristic polynomial is

P0(X) = (a33 −X)
(
X2 − (a11 + a22)X

+ a11a22 + a1 (b1 − α)u∗w∗
)
, (117)

according to Routh Hurwitz criterion, the
equilibrium point E4 is asymptotically sta-
ble if the roots of characteristic polynomial
P0(X) have all negative real part. That is
to say

X0 = a33 < 0, (118)

(a11 + a22) < 0, (119)

a11a22 + a1 (b1 − α)u∗w∗ > 0, (120)

then, we have

X0 = a33 < 0,

⇒ a33 = r3 + (c1 − β) u∗ + (c2 − γ) w∗ < 0,

⇒ r3 + c1 u
∗ − β u∗ + c2w

∗ − γ w∗ < 0,

⇒ r3 + c1 u
∗ + c2w

∗ < β u∗ + γ w∗, (121)

moreover, we have

a11 + a22 = r1 + r2 + (b1 − α) u∗ − a1w
∗ − τ

− 2

k
(r1 u

∗ + (b1 − α)u∗ + r2k) ,

= r1 −
2

k
r1 u

∗ + (b1 − α) u∗

− 2

k
(b1 − α)u∗ − r2 − a1w

∗ − τ,

= r1(1−
2

k
u∗) + (1− 2

k
)(b1 − α)u∗

− r2 − a1w
∗ − τ, (122)

then,

a11 + a22 < 0,

⇒ r1 + b1u
∗ +

2α

k
u∗ <

2

k
(b1 + r1)u

∗

+ αu∗ + r2 + a1w
∗ + τ,
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and finally

a11a22 + a1 (b1 − α)u∗w∗ > 0,

⇒ r1 (r2 + b1 u
∗) +

2r2
k

a1(w
∗)2

+

(
2 r1
k

u∗ + τ

)(
2 r2
k

w∗ + αu∗
)

> r1

(
2 r2
k

w∗ + αu∗
)
+ r2a1w

∗

+

(
2 r1
k

u∗ + τ

)
(r2 + b1 u

∗) . (123)

Therefore, the equilibrium point E4 is
asymptotically stable if the conditions
(121), (122) and (123) are satisfied. ■

Proposition 3.6 The equilibrium point E5 of
the system (76) is asymptotically stable if the con-
ditions below are satisfied.

i) (
2 r1
k

u∗ + τ

)(
2 r3
k

z∗ + β u∗
)

+
2r3
k

a2(z
∗)2 + r1 (r3 + c1 u

∗) >

r1

(
2 r3
k

z∗ + β u∗
)
+ r3a2z

∗

+

(
2 r1
k

u∗ + τ

)
(r3 + c1 u

∗) ,

ii) αu∗ + b2 z
∗ > r2 + b1 u

∗,

iii)

βu∗ + r3 + a2z
∗ + τ +

2(r1 + c1)u
∗

k

> r1 + c1u
∗ +

2βu∗

k
.

Proof: The Jacobian matrix of the system
(76) at equilibrium point E5 is

Jac(f)(E5) =

(
a11 −a1 u

∗ −a2 u
∗

0 a22 0
(c1 − β) z∗ c2 z

∗ a33

)
,

(124)
where

a11 = r1 −
2 r1
k

u∗ − a2 z
∗ − τ,

a22 = r2 + (b1 − α) u∗ − b2 z
∗,

a33 = r3 −
2 r3
k

z∗ + (c1 − β) u∗,

and its characteristic polynomial is

P1(X) = (a22 −X)
(
X2 − (a11 + a33)X

+a11a33 + a2 (c1 − β)u∗z∗
)
, (125)

according to Routh Hurwitz criterion,
equilibrium point E5 is asymptotically sta-
ble if the roots of characteristic polynomial
P1(X) have all negative real part. That is
to say

X0 = a22 < 0, (126)

a11 + a33 < 0, (127)

a11a33 + a2 (c1 − β)u∗z∗ > 0, (128)

then, we have

X0 = a22 < 0,

⇒ a22 = r2 + (b1 − α) u∗ − b2 z
∗ < 0,

⇒ r2 + b1 u
∗ < αu∗ + b2 z

∗, (129)

moreover, we have

a11 + a33 = r1 −
2 r1
k

u∗ − a2 z
∗ − τ + r3

− 2 r3
k

z∗ + (c1 − β) u∗,

= r1(1−
2

k
u∗) + (1− 2

k
)(c1 − β)u∗

− r3 − a2 z
∗ − τ,

then,

a11 + a33 < 0,

⇒ r1 + c1u
∗ +

2βu∗

k
<

2(r1 + c1)u
∗

k
+ βu∗ + r3 + a2z

∗ + τ, (130)

and finally

a11a33 + a2 (c1 − β)u∗z∗ > 0,

⇒ r1 (r3 + c1 u
∗) +

2r3
k

a2(z
∗)2

+

(
2 r1
k

u∗ + τ

)(
2 r3
k

z∗ + β u∗
)

>

r1

(
2 r3
k

z∗ + β u∗
)
+ r3a2z

∗

+

(
2 r1
k

u∗ + τ

)
(r3 + c1 u

∗) . (131)

Therefore, the equilibrium point E5 is
asymptotically stable if the conditions
(129), (130) and (131) are satisfied. ■
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Proposition 3.7 The equilibrium point E6 of
the system (76) is asymptotically stable if the con-
ditions below are satisfied.

i)

r2 (r3 + c2w
∗) +

2 r2
k

w∗
(
2 r3
k

z∗ + γ w∗
)

+ b2 z
∗
(
2 r3
k

z∗ + γ w∗
)

> +r3b2z
∗

+ r2

(
2 r3
k

z∗ + γ w∗
)
+

2 r2
k

w∗ (r3 + c2w
∗) ,

ii)

αu∗ + b2 z
∗ > r2 + b1 u

∗,

iii)

r3 + b2z
∗ + γw∗ +

2(c2 + r2)

k
w∗

> r2 + c2w
∗ +

2γ

k
w∗.

Proof: The Jacobian matrix of the system
(76) at equilibrium point E6 is

Jac(f)(E6) =

(
a11 0 0

(b1 − α) w∗ a22 −b2w
∗

(c1 − β) z∗ c2 z
∗ a33

)
,

(132)
where

a11 = r1 − a1w
∗ − a2 z

∗, (133)

a22 = r2 −
2 r2
k

w∗ − b2 z
∗, (134)

a33 = r3 −
2 r3
k

z∗ + (c2 − γ) w∗, (135)

and its characteristic polynomial is

P2(X) = (a11 −X)
(
X2 − (a22 + a33)X

+a22a33 + b2 c2w
∗z∗
)
, (136)

according to Routh Hurwitz criterion,
equilibrium point E6 is asymptotically sta-
ble if the roots of characteristic polynomial
P2(X) have all negative real part. That is
to say

X0 = a11 < 0, (137)

a22 + a33 < 0, (138)

a22a33 + b2 c2w
∗z∗ > 0, (139)

then, we have

X0 = a11 < 0

⇒ a11 = r2 + (b1 − α) u∗ − b2 z
∗ < 0

⇒ r2 + b1 u
∗ < αu∗ + b2 z

∗, (140)

moreover, we have

a22 + a33 = r2 + r3 + (c2 − γ) w∗ − 2 r2
k

w∗

− 2 r3
k

z∗ − b2 z
∗,

= r2(1−
2

k
w∗) + (1− 2

k
)(c2 − γ)w∗

− r3 − b2 z
∗,

then,

a22 + a33 < 0,

⇒ r2 + c2w
∗ +

2γ

k
w∗ < r3 + b2z

∗

+ γw∗ +
2c2
k

w∗ +
2r2
k

w∗, (141)

and finally

a22a33 + b2 c2w
∗z∗ > 0,

⇒ r2 (r3 + c2w
∗) +

2 r2
k

w∗
(
2 r3
k

z∗ + γ w∗
)

+ b2 z
∗
(
2 r3
k

z∗ + γ w∗
)

> r3b2z
∗

+ r2

(
2 r3
k

z∗ + γ w∗
)
+

2 r2
k

w∗ (r3 + c2w
∗) .

(142)

Therefore, the equilibrium point E6 is
asymptotically stable if the conditions
(140), (141) and (142) are satisfied. ■

3.4.2 Local stability of positive

equilibrium point
let’s put

m1 = r1, m2 =
2 r1
k

ū+ a1 w̄ + a2 z̄ + τ,

m3 = r2 + (b1 − α) , m4 =
2 r2
k

w̄ + b2 z̄,

m5 = r3 + (c1 − β) ū+ (c2 − γ) w̄,

m6 =
2 r3
k

z̄,

M1 = m1m3m5 +m2m4m5

+ m1m4m6 +m2m3m6,

M2 = m1m4m5 +m2m3m5

+ m1m3m6 +m2m4m6,
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ρ1 = 2M2 + (m4 +m6)(m1 −m2)
2

+ (m2 +m6)(m3 −m4)
2

+ a1(m2 +m4) (b1 − α) ū w̄

+ a2(m2 +m6) (c1 − β) ū z̄

+ (m2 +m4)(m5 −m6)
2

+ b2c2(m4 +m6) w̄ z̄,

ρ2 = 2M1 + (m3 +m5)(m1 −m2)
2

+ (m1 +m5)
2(m3 −m4)

2

+ a1(m1 +m3) (b1 − α) ū w̄

+ a2(m1 +m5) (c1 − β) ū z̄

+ (m1 +m3)(m5 −m6)
2

+ b2c2(m3 +m5) w̄ z̄,

ρ3 = M2 + a2m4 (c1 − β) ū z̄ + b2c2m2 w̄ z̄

+ a1 (b1 − α) m6 ū w̄ + a2c2 (b1 − α) ū w̄ z̄,

ρ4 = M1 + a2m3 (c1 − β) ū z̄ + b2c2m1 w̄ z̄

+ a1 (b1 − α) m5 ū w̄ + a1 b2 (c1 − β) ū w̄ z̄.

Theorem 3.2 Suppose the following assump-
tions are satisfied

i)
(
2 r1
k + α+ β

)
ū +

(
2 r2
k + a1 + γ

)
w̄ +(

2 r3
k + a2 + b2

)
z̄ + τ > r1 + r2 + r3 +

(b1 + c1) ū+ c2 w̄.

ii) ρ1 > ρ2.

iii) ρ3 > ρ4.

Then, the positive equilibrium point Ē =
(ū, w̄, z̄)T of the system (76) is locally asymptot-
ically stable.

Proof: The Jacobian matrix of system
(76) at the positive equilibrium point Ē =
(ū, w̄, z̄)T is

Jac(f)(Ē) =

(
a11 −a1 ū −a2 ū

(b1 − α) w̄ a22 −b2 w̄
(c1 − β) z̄ c2 z̄ a33

)
,

(143)
where

a11 = r1 −
2 r1
k

ū− a1 w̄ − a2 z̄ − τ,

a22 = r2 −
2 r2
k

w̄ + (b1 − α) ū− b2 z̄,

a33 = r3 −
2 r3
k

z̄ + (c1 − β) ū+ (c2 − γ) w̄,

the characteristic polynomial of Jac(f)(Ē)
is

P (X) = X3 + λ2X
2 + λ1X + λ0, (144)

with

λ2 = −(a11 + a22 + a33),

λ1 = a11a22 + a11a33 + a22a33
− a12a21 − a23a32 − a13a31,

λ0 = a13a31a22 + a23a32a11 + a12a21a33
− a11a22a33 − a12a23a31 − a13a21a32.

The equilibrium point Ē = (ū, w̄, z̄)T is lo-
cally asymptotically stable, if the following
Routh Hurwitz criterion is satisfied.

λ2 > 0, (145)

λ2 λ1 − λ0 > 0, (146)

λ0 > 0. (147)

Inequality (145) leads to

λ2 > 0 ⇒ −(a11 + a22 + a33) > 0,

⇒
(
2 r1
k

+ α+ β

)
ū+

(
2 r2
k

+ a1 + γ

)
w̄

+

(
2 r3
k

+ a2 + b2

)
z̄ + τ > r1 + r2 + r3

+ (b1 + c1) ū+ c2 w̄.

Moreover, the inequality (146) leads to

λ2 λ1 − λ0 > 0

⇒ − a11a11a22 − a11a11a33 − 2a11a22a33
+ a11a12a21 + a11a13a31 − a22a11a22
− a22a22a33 + a22a12a21 + a22a23a32
− a33a11a33 − a33a22a33 + a33a23a32
+ a33a13a31 + a12a23a31 + a13a21a32 > 0,
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using the above hypotheses, we have

λ2 λ1 − λ0 > 0

⇒
(
2M2 + (m4 +m6)(m1 −m2)

2

+ (m2 +m6)(m3 −m4)
2

+ a1(m2 +m4) (b1 − α) ū w̄

+ a2(m2 +m6) (c1 − β) ū z̄

+ (m2 +m4)(m5 −m6)
2

+ b2c2(m4 +m6) w̄ z̄
)

> (
2M1 + (m3 +m5)(m1 −m2)

2

+ (m1 +m5)
2(m3 −m4)

2

+ a1(m1 +m3) (b1 − α) ū w̄

+ a2(m1 +m5) (c1 − β) ū z̄

+ (m1 +m3)(m5 −m6)
2

+ b2c2(m3 +m5) w̄ z̄
)
,

then, using the above hypotheses, we have

λ2 λ1 − λ0 > 0 ⇒ ρ1 > ρ2. (148)

Finally, inequality (147) leads to

λ0 > 0,

λ0 = a13a31a22 + a23a32a11 + a12a21a33
− a11a22a33 − a12a23a31 − a13a21a32 > 0,

λ0 = M2 + a2m4 (c1 − β) ū z̄ + b2c2m2 w̄ z̄

+ a1 (b1 − α) m6 ū w̄ + a2c2 (b1 − α) ū w̄ z̄

− M1 − a2m3 (c1 − β) ū z̄ − b2c2m1 w̄ z̄

− a1 (b1 − α) m5 ū w̄ − a1 b2 (c1 − β) ū w̄ z̄,

then, using the above hypotheses, we have

λ0 > 0 ⇒ ρ3 > ρ4. (149)

■

3.4.3 Global stability of positive

equilibrium point
We study the global stability of the equilibrium
point Ē = (ū, w̄, z̄)T of system (76).

Theorem 3.3 Suppose the following assump-
tions are satisfied,

r1 −
r1ū

k
= a1w̄ + a2z̄,

r2 −
r2w̄

k
= − (b1 − α) ū+ b2z̄,

r3 −
r3z̄

k
= − (c1 − β) ū− (c2 − γ) w̄,

and ν1 =
c2 − γ

b2
, ν2 =

c1 − β

a1
, ν3 = 1.

Then, the positive equilibrium point Ē is globally
asymptotically stable.

Proof: Let be the following Lyapunov
function

L : R3 −→ R

defined by

L(u,w, z) = L1(u,w, z)+L2(u,w, z)+L3(u,w, z),
(150)

with

L1(u,w, z) = ν1

(
(u− ū)− ū ln(

u

ū
)
)
,

L2(u,w, z) = ν2

(
(w − w̄)− w̄ ln(

w

w̄
)
)
,

L3(u,w, z) = ν3

(
(z − z̄)− z̄ ln(

z

z̄
)
)
,

where νi, i ∈ {1, · · · , 3} are positive con-
stants to be determined in the following. L
is defined and continuous on Int(R3

+). Note
that,{
L(ū, w̄, z̄) = 0,

L(ū, w̄, z̄) > 0 for all (u, v, w)T ∈ Ω \ (ū, w̄, z̄)T ,
(151)

(ū, w̄, z̄)T is therefore a global minimum of
L. Furthermore, all solutions of the sys-
tem are bounded and converge to Ω. For
t sufficiently large, we’ll restrict our study
to this set.

The orbital derivative of L, i.e, the
derivative with respect to time t along the
solutions of the system (38) is

dL

dt
=

dL1

dt
+

dL2

dt
+

dL3

dt
, (152)

using the following expression,

dLi

dt
=

dLi

du

du

dt
+

dLi

dv

dv

dt
+

dLi

dw

dw

dt
, (153)

we have

dL1

dt
= ν1 (u− ū)

(
r1 −

r1u

k
− a1w − a2z

)
,

dL2

dt
= ν2 (w − w̄)

(
r2 −

r2w

k
+ (b1 − α)u− b2z

)
,

dL3

dt
= ν3 (z − z̄)×(

r3 −
r3z

k
+ (c1 − β)u+ (c2 − γ)w

)
,
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let’s put

r1 −
r1ū

k
= a1w̄ + a2z̄,

r2 −
r2w̄

k
= − (b1 − α) ū+ b2z̄,

r3 −
r3z̄

k
= − (c1 − β) ū− (c2 − γ) w̄,

and ν1 =
c2 − γ

b2
, ν2 =

c1 − β

a1
, ν3 = 1.

Then,

dL1

dt
= ν1 (u− ū)

(
− r1

k
(u− ū)− a1 (w − w̄)

)
− ν1a2 (u− ū) (z − z̄) ,

dL2

dt
= ν2 (w − w̄)

(
− r2

k
(w − w̄)− b2 (z − z̄)

)
− ν2 (w − w̄) (b1 − α) (u− ū) ,

dL3

dt
= ν3 (z − z̄)

(
(c1 − β) (u− ū)

)
+ν3 (z − z̄)

(
(c2 − γ) (w − w̄)− r3

k
(z − z̄)

)
,

⇒
dL1

dt
= −ν1r1

k
(u− ū)2 − a1ν1(u− ū) (w − w̄)

− a2ν1(u− ū) (z − z̄),

dL2

dt
= −ν2r2

k
(w − w̄)2 − b2ν2(w − w̄) (z − z̄)

− ν2 (b1 − α) (u− ū) (w − w̄),

dL3

dt
= −ν3r3

k
(z − z̄)2 + ν3 (c1 − β) (u− ū) (z − z̄)

+ ν3 (c2 − γ) (w − w̄) (z − z̄),

using expression (152), we have

dL

dt
= −ν1r1

k
(u− ū)2 − ν2r2

k
(w − w̄)2

+ (αν2 − a1ν1 − b1ν2) (u− ū)(w − w̄)

+ (c1ν3 − a2ν1 − βν3) (u− ū)(z − z̄)

+ (c2ν3 − b1ν2 − γν2) (w − w̄)(z − z̄)

− ν3r3
k

(z − z̄)2,

dL

dt
≤ −ν1r1

k
(u− ū)2 − ν2r2

k
(w − w̄)2

− ν3r3
k

(z − z̄)2 < 0.

Therefore, dL
dt < 0 and dL

dt = 0 iff

(u, v, w)T = (ū, w̄, z̄)T . So, L is a strict
Lyapunov function and by LaSalle’s in-
variance theorem, it follows that (ū, w̄, z̄)T

is globally asymptotically stable on Ω. ■

3.4.4 System permanence
System permanence addresses the problem of
long-term population survival. The interest here
is to find the conditions under which the inter-
acting species in the system (76) will reach some
form of coexistence over time. Let’s put

θ1 = a1δ
∗
2 + a2 δ

∗
3 ,

θ2 = α1δ
∗
1 + b2 δ

∗
3 ,

θ3 = (c1 − β) δ∗1 + (c2 − γ) δ∗2 ,

with

r3 + θ3
r3

k := δ∗3 ,
r2 − θ2

r2
k := δ∗2 ,

r1 − θ1
r1

k := δ∗1 .

Definition 3.4 [12]
System (76) is said to be permanent if there exist
positive constants mi and Mi, i ∈ {1, . . . , 3} such
that, for each component of the positive solution
X(t) of the system (76), we have

m1 ≤ lim inf
t−→+∞

u(t) ≤ lim sup
t−→+∞

u(t) ≤ M1,

m2 ≤ lim inf
t−→+∞

w(t) ≤ lim sup
t−→+∞

w(t) ≤ M2,

m3 ≤ lim inf
t−→+∞

z(t) ≤ lim sup
t−→+∞

z(t) ≤ M3.

Lemma 3.5 [12]
If there exist positive constants M > 0 and n >
0, such that for any positive solution X(t) of the
system ( 76), we have

n ≤ lim inf
t−→+∞

∥X(t)∥ ≤ lim sup
t−→+∞

∥X(t)∥ ≤ M,

then, the system (76) is called uniformly perma-
nent.

Theorem 3.4 If hypotheses below are satisfied,
then the system (76) is permanent.

r1 > θ1δ
∗
2 + a2 δ

∗
3 , (154)

r2 + b1δ
∗
1 > θ2, (155)

r3 + c1δ
∗
1 + c2 δ

∗
2 > βδ∗1 + γ δ∗2 . (156)

Proof: According to Theorem 3.1 for
any solution X(t), we have the following in-
equalities

lim sup
t−→+∞

u(t) ≤ δ1 < +∞, (157)

lim sup
t−→+∞

v(t) ≤ δ2 < +∞, (158)

lim sup
t−→+∞

w(t) ≤ δ3 < +∞. (159)
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There is a constant M < +∞, M = maxi δi
such that ∀ i ∈ {1, . . . , 3}, we have

lim sup
t−→+∞

∥X(t)∥ ≤ M. (160)

Let’s prove that there exists m > 0 such
that

lim inf
t−→+∞

∥X(t)∥ ≥ m, (161)

considering the equation (76)1, we have

du

dt
=

(
r1 −

r1
k
u− a1w − a2 z − τ

)
u, (162)

du

dt
≥

(
r1 −

r1
k
u− a1δ2 − a2 δ3

)
u, (163)

du

dt
≥

(
r1 − θ1 −

r1
k
u
)
u. (164)

Using lemma 2.1, we have

lim inf
t−→+∞

u(t) ≥ r1 − θ1
r1

k := δ∗1 , (165)

∀ϵ1 > 0, there exists T1 > 0 such that

u(t) > δ∗1 − ϵ1 ∀ t ≥ T1. (166)

By the same process, considering the equa-
tion (76)2, we get

lim inf
t−→+∞

w(t) ≥ r2 − θ2
r2

k := δ∗2 . (167)

We have for all ϵ2 > 0, there exists T2 > 0
such that

w(t) > δ∗2 − ϵ2 ∀ t ≥ T2,

with
r2 + b1δ

∗
1 − θ2

r2
k := δ∗2 .

Considering equation (76)3, we have

dz

dt
=

(
r3 −

r3
k
z + (c1 − β) u+ (c2 − γ) w

)
z,

dz

dt
≥

(
r3 −

r3
k
z + (c1 − β) (δ∗1 − ϵ1)

+ (c2 − γ) (δ∗2 − ϵ2)
)
z,

dz

dt
≥

(
r3 + θ − r3

k
z
)
z. (168)

Then, by applying lemma 2.1 we obtain
that

lim inf
t−→+∞

z(t) ≥ r3 + θ3
r3

k := δ∗3 , (169)

∀ϵ3 > 0, there exists T3 > 0 such that

z(t) > δ∗3 − ϵ3 ∀t ≥ T3. (170)

Let 0 < m = mini δ
∗
i , ∀i ∈ {1, . . . , 3} then,

according to the hypotheses of theorem 3.4
any solution X(t) of system (76) verifies the
inequation below

m ≤ lim inf
t−→+∞

∥X(t)∥. (171)

■

3.4.5 Extinction of species
We’re looking for the conditions under which the
system (76) turns off over time. In fact, the ex-
tinction of the system determines the death or
disappearance of all the species interacting in the
system (76).

Definition 3.5 [21] System (76) turns off, if

lim inf
t−→+∞

∥X(t)∥ = 0. (172)

Theorem 3.5 Suppose conditions below are sat-
isfied.

i) r1 < a1δ
∗
2 + a2 δ

∗
3 .

ii) r2 + b1δ1 < b2 δ
∗
3 + α δ∗1 .

iii) r3 + c1 δ
∗
1 + c2 δ

∗
2 < γ δ∗2 + β δ∗1 .

Then, system (76) goes extinct, i.e, there is ex-
tinction of all interacting populations.

Proof: From equation (76)1, we have

du

dt
= u

(
r1 −

r1u

k
− a1w − a2 z − τ

)
, (173)

du

dt
≤ u

(
r1 − a1δ

∗
2 − a2 δ

∗
3

)
, (174)

u(t) ≤ u(0)exp
{
(r1 − a1δ

∗
2 − a2 δ

∗
3)t
}
. (175)

Thus according to i), u(t) → 0 when t →
+∞. There is extinction of the population
u. Likewise, from equation (76)2, we obtain

w(t) ≤ w(0)exp{(r2 + b1δ1 − b2 δ
∗
3 − α δ∗1)t}.

and if condition ii) is satisfied w(t) → 0
when t → +∞. There is extinction of
species w.

Considering equation (76)3, we have

dz

dt
=

(
r3 −

r3
k
z + (c1 − β) u+ (c2 − γ) w

)
z,

dz

dt
≤ z

(
r3 + c1 δ

∗
1 + c2 δ

∗
2 − γ δ∗2 − β δ∗1

)
,

z(t) ≤ z(0)exp
{
(r3 + c1 δ

∗
1 + c2 δ

∗
2 − γ δ∗2 − β δ∗1)t

}
.
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Thus according to iii), z(t) → 0 when
t → +∞. There is extinction of predators
z. ■

3.5 Numerical simulations
In this section, we verify the theoretical results.
The parameters that are defined the in Tables 1
and 3, lead to Figures 15 and 16. Moreover, the
Tables 2 and 4 show the stability of the equilib-
rium points. In addition, the Table 5 contains
the parameters for the different phase portraits
shown in Figure 17. These figures are discussed
to help understand them.

3.5.1 Evolution of interacting

populations according to the model

(76)
Model (76) presents a rich and varied dynamic.
For initial conditions (u0;w0; z0) and different pa-
rameter values defined in the table 1, we obtain
figures on Figure 15. We first obtain an evolu-
tion similar to that obtained in the model (12)
for (u0;w0; z0) = (291; 30; 41). It’s an evolution
in the form of a continuous cycle in which each
species seems to be the sole survivor while the
other two are close to extinction. This evolution
can be seen in figure 15a. Figure 15b shows a
dynamic in which the three densities are stabi-
lizing around u ≃ 70 for the preys, w ≃ 175 for
intermediate predators and z ≃ 49. In figure 15c,
densities have a decreasing aperiodic trend be-
tween (umin;wmin; zmin) ≃ (10.13; 4; 16.65) and
(umax;wmax; zmax) ≃ (82.64; 74; 21.7) before sta-
bilizing from t ≃ 150 at ustable ≃ 46.8 for preys,
wstable ≃ 13.2 for intermediate predators and
zstable ≃ 46.8 for the super predators.

Figure 16 shows the dynamics in which species
densities become extinct following parameters se-
lected from Table 4. In Figure 16a, super-
predators adapt to prey scarcity, while in Fig-
ure 16b, intermediate predators survive without
direct predators. It should be noted that high
predation rates are detrimental to predators. In
fact, High consumption of infected prey inflicts
losses on predator populations.

3.5.2 Phase portraits for interacting

populations according to the model

(76)
In Figure 17, we present several phase portraits
to visualize the evolution of the different trajec-
tories of the various densities in relation to each
other. First, in Figure 17a for (u0;w0; z0) =
(51; 20; 15), we obtain a coevolution of the

(a) Population’s evolution with
(u0 = 291, w0 = 30, z0 = 41)

(b) Population’s evolution with
(u0 = 251, w0 = 60, z0 = 45)

(c) Population’s evolution with
(u0 = 251, w0 = 60, z0 = 45)

Figure 15: Some types of population evolution
according to model (76).

three species over the time, the different species
maintain stable population densities. Neverthe-
less, it should be noted that the density of super-
predators is much higher than the other two den-
sities, this is because predation rates are high.
Furthermore, Figure 17b shows a similar dynamic
in which the three densities are stabilizing their
population densities. But, since predation rates
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(a) Population’s evolution with
(u0 = 291, w0 = 30, z0 = 41)

(b) Population’s evolution with
(u0 = 251, w0 = 60, z0 = 45)

(c) Population’s evolution with
(u0 = 270, w0 = 45, z0 = 25)

Figure 16: Some types of population extinction
according to model (76).

have decreased slightly the density of intermedi-
ate predators seems to match that of super preda-
tors. However, for Figure 17c and Figure 17d, we
slightly decrease predation rates and increase in-
fection rate τ . As a result, the density of super
predators has been severely disrupted and they
are now on the brink of extinction. The increas-
ing of infection rate seem to have serious conse-

Table 1: Input data for numerical simulations of
Figure 15.

Figure15(a) Figure15(b) Figure15(c)

r1 = 2.71 r1 = 2.71 r1 = 2.71
r2 = 1.94 r2 = 1.94 r2 = 1.94
r3 = 0.75 r3 = 1.75 r3 = 1.75
a1 = 0.101 a1 = 0.00101 a1 = 0.101
a2 = 0.031 a2 = 0.0031 a2 = 0.0031
b1 = 0.017 b1 = 0.00101 b1 = 0.017
b2 = 0.052 b2 = 0.0521 b2 = 0.052
c1 = 0.0075 c1 = 0.00101 c1 = 0.00101
c2 = 0.017 c2 = 0.0017 c2 = 0.0017
α = 0.0009 α = 0.00109 α = 0.00109
β = 0.073 β = 0.0215 β = 0.02197
γ = 0.012 γ = 0.00021 γ = 0.0021
k = 80.00 k = 100.00 k = 100.00
τ = 0.0201 τ = 0.921 τ = 0.021

Table 2: Equilibrium stability table for the data
used in figure 15.

Figure15(a) Figure15(b) Figure15(c)

E0 unstable E0 unstable E0 unstable
E1 unstable E1 unstable E1 unstable
E2 unstable E2 unstable E2 unstable
E3 unstable E3 unstable E3 unstable
E4 × E4 unstable E4 ×
E5 unstable E5 stable E5 stable
E6 × E6 × E6 ×
Ē × Ē stable Ē ×

Table 3: Input data for numerical simulations of
Figure 16.

Figure16(a) Figure16(b) Figure16(c)

r1 = 2.59 r1 = 2.59 r1 = 2.59
r2 = 0.5 r2 = 0.5 r2 = 0.5
r3 = 0.420 r3 = 0.42 r3 = 0.42
a1 = 0.001 a1 = 0.001 a1 = 0.001
a2 = 0.004 a2 = 0.004 a2 = 0.004
b1 = 0.471 b1 = 0.0471 b1 = 0.0471
b2 = 0.001 b2 = 0.001 b2 = 0.001
c1 = 0.041975 c1 = 0.041975 c1 = 0.041975
c2 = 0.032971 c2 = 0.03297 c2 = 0.03297
α = 0.29710 α = 0.20319 α = 0.22971
β = 0.020319 β = 0.02038 β = 0.20319
γ = 0.6700 γ = 0.00021 γ = 0.2038
k = 110.00 k = 110.00 k = 110.00
τ = 0.71 τ = 2.921 τ = 0.7204

quences for populations densities.
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Table 4: Equilibrium stability table for the data
used in figure 16.

Figure16(a) Figure16(b) Figure16(c)

E0 unstable E0 unstable E0 unstable
E1 unstable E1 unstable E1 unstable
E2 unstable E2 unstable E2 unstable
E3 unstable E3 unstable E3 unstable
E4 stable E4 unstable E4 unstable
E5 unstable E5 unstable E5 unstable
E6 unstable E6 unstable E6 unstable
Ē unstable Ē unstable Ē unstable

Table 5: Input data for numerical simulations of
Figure 17.

Figure17(a) Figure17(b) Figure17(c) Figure17(d)

r1 = 2.71 r1 = 2.71 r1 = 2.95 r1 = 2.05
r2 = 0.94 r2 = 1.94 r2 = 1.15 r2 = 0.50
r3 = 1.5 r3 = 1.75 r3 = 1.021 r3 = 0.020
a1 = 0.101 a1 = 0.101 a1 = 0.071 a1 = 0.001
a2 = 0.031 a2 = 0.0031 a2 = 0.05 a2 = 0.0041
b1 = 0.00171 b1 = 0.017 b1 = 0.41 b1 = 0.471
b2 = 0.051 b2 = 0.052 b2 = 0.51 b2 = 0.721
c1 = 0.0075 c1 = 0.00101 c1 = 0.730 c1 = 0.0475
c2 = 0.017 c2 = 0.0017 c2 = 0.041 c2 = 0.001
α = 0.009 α = 0.0109 α = 0.970 α = 0.97
β = 0.073 β = 0.02197 β = 0.035 β = 0.0365
γ = 0.012 γ = 0.021 γ = 0.480 γ = 0.670
k = 70 k = 70 k = 70 k = 11.074
τ = 0.0201 τ = 0.0212 τ = 0.71 τ = 0.71

3.5.3 Some fields of application of the

model (76)
Mathematical models can find several fields of ap-
plication. The model (12) for example and several
of its variants have been studied with a view to
their application to various fields.

As examples of fields of application, these
models have been used in biology to study the
dynamics of certain populations behaving in par-
ticular ways in given environments. In [22], au-
thors show that a species of side-blotched lizards
presents a heteroclinic cycle behavior. Popula-
tions alternately play the role of dominant species
before being supplanted by a more competitive
population. Other applications have been pro-
posed in computational neuroscience, [23] and a
stochastic extension of May-Leonard model has
been appied to a neuromotor central pattern gen-
erator system, [24].

Our model presents a heteroclinic cycle behav-
ior, very similar to the May-Leonard model, for
certain parameter values. Therefore, the system
could have applications in various fields. For ex-
ample, we could study an extension for this model
in the case where species evolve in a stochastic

(a) The phase portrait with
(u0 = 51, w0 = 20, z0 = 15)

(b) The phase portrait with
(u0 = 200, w0 = 12, z0 = 51)

(c) The phase portrait with
(u0 = 30, w0 = 10, z0 = 10)

(d) The phase portrait with
(u0 = 70, w0 = 12, z0 = 25)

Figure 17: Some phase portrait according to the
model (76).

environment. Furthermore, it could be useful in
biology to study the evolution of a population at-
tacked by a disease. The extensions could also
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be applied to computer science and control engi-
neering.

4 Conclusion
In this article, we have explored several popula-
tion dynamics models. The models studied high-
light various types of interactions among three
species within a natural environment. Our con-
tribution in this paper can be summarized in two
main stages.

First, we have analyzed various biological
models of three interacting species. For each
model, we determined the various equilibrium
points, studied their stability and produced nu-
merical illustrations using Matlab software to ver-
ify the results obtained. These include the May-
Leonard three-competitor model and some three-
species prey-predator models:

• A two-prey, one-predator model in which nu-
merical tests have shown that species densi-
ties become stable after a certain time.

• A super-predator, predator and prey model
in which numerical simulations have shown
that prey, predator and super-predator pop-
ulation densities oscillate aperiodically before
reaching to a steady state. Additionaly, for
certain predation rates, populations can be-
come extinct.

• A prey-predator model with prey harvesting,
in which numerical simulations showed that
the system can achieve stability depending of
the prey harvesting rates.

In the second stage, we proposed and investigated
a new model involving three species interacting in
a natural environment. For this model, we took
into account the notion of self-defense, with prey
having within them certain infected individuals.
An in-depth analysis of the model has allowed us
to determine the conditions for both extinction
and long-term survival of the species. This anal-
ysis has involved identifying various equilibrium
points and studying their stability. Finally, we
carried out numerical tests in a Maltab environ-
ment to illustrate population dynamics according
to the different models presented. The simulation
results showed a relationship between predation
rate and a reduction of the predator population:
as the predaton rate increased, the predator rate
due to infection within the prey population also
increased.

For future research, we plan to apply our
model to various fields, particullary in medecine
for controlling bacterial contamination in hu-
man, animal and plant population in agriculture

also an animal and fishery resource management
project for followed population growth will be
considered. It should be added that we have out-
lined several areas in section 3.5.3 in which our
work could be put to practical use in the near
future.

References:

[1] Deeptajyoti Sen, S. Ghorai, Swarnali
Sharma, Malay Banerjee, Allee effect in
prey’s growth reduces the dynamical com-
plexity in prey-predator model with gener-
alist predator, Applied Mathematical Mod-
elling, (October 2020).

[2] M. X. He and Z. Li, Stability of a fear ef-
fect predator-prey model with mutual inter-
ference or group defense, J. Biol. Dynam., 16
(2022), 480-498.

[3] C. Lois-Prados and F. M. Hilker, Bifurca-
tion sequences in a discontinuous piecewise-
smooth map combining constant-catch and
threshold-based harvesting strategies, SIAM
J. Appl. Dyn. Syst., 21 (2022), 470-499.

[4] T. B. B. Lagui, M. Dosso, G. Sitionon, An
analysis of some models of prey-predator in-
teraction. wseas transactions on biology and
biomedicine, Volume 21, (2024).

[5] A. Whitney Scheffel, L. Heck Jr Kenneth
and P. Lawrence Rozas, Effect of Habitat
Complexity on Predator-Prey Relationships:
Implications for Black Mangrove Range Ex-
pansion into Northern Gulf of Mexico Salt
Marshes. Journal of Shellfish Research, 36(1)
(2019) 181-188.

[6] M. Bakhsh, M. H. Ghazali, M. K. Yar, A.
Channo, The role of fish in global food and
nutrition security: current aspects and fu-
ture prospects, University of Sindh Journal
of Animal Sciences, (december 2023).

[7] M. Troell, M. Jonell and B. Crona, The
role of seafood for sustainable and healthy
diets, The EAT-Lancet commission report
through a blue lens Technical Report, (Jan-
uary 2019).

[8] W. Abid, Analyse de la dynamique de cer-
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Université du Havre; Université de Tu-
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Conférence Internationale Francophone
d’Automatique, CIFA 2010, (2010), Nancy,
France. pp.CDROM. ffhal-00543086ff

[16] F.R Gantmacher, The Theory of Matrices.
Chelsea Publishing Company, New York edi-
tion, (1959), p 212-250.

[17] M. Daher Okiye and M.A. Aziz-Alaoui,
On the dynamics of a predator-prey model
with the Holling-Tanner functional response.
MIRIAM Editions, Proc. ESMTB conf.,
(2002) p 270–278.

[18] R.M. May and W.J .Leonard, Nonlinear As-
pects of Competition Between Three Species,
Siam J. Appl. Math, Vol.29, No.2, (1975),
243-253.

[19] M.A. Aziz-Alaoui and M. Daher Okiye,
Boundedness and global stability for a
predator-prey model with modified Leslie-
Gower and Holling type II shemes. Applied
Math. Letters, 16(7) (2003), 1069–1075.

[20] K. Ghorbal, A. Sogokon, Characterizing Pos-
itively Invariant Sets: Inductive and Topo-
logical Methods. Journal of Symbolic Com-
putation, (2022). ffhal-03540862ff

[21] L. Zhao, F. Chen, S. Song and G. Xuan,
The Extinction of a Non-Autonomous Al-
lelopathic Phytoplankton Model with Non-
linear Inter-Inhibition Terms and Feedback
Controls, Mathematics, 8(2), (2020) 173;
https://doi.org/10.3390/ math8020173

[22] B. Sinervo, C.M. Lively, The rock-paper-
scissors game and the evolution of alterna-
tive male strategies. Nature 380(6571):240
(1996).

[23] D.N. Lyttle, J.P. Gill, K.M. Shaw et al., Ro-
bustness, flexibility, and sensitivity in a mul-
tifunctional motor control model. Biol Cy-
bern, (2017), 111(1):25–47.

[24] N.W. Barendregt, and P.J. Thomas, Het-
eroclinic cycling and extinction in May-
Leonard models with demographic stochas-
ticity. Journal of Mathematical Biology,
86(2), 30. (2023). 10.1007/s00285-022-01859-
4

Acknowledgment:
The authors would like to express their sincere
thanks to the anonymous reviewers for their
helpful comments and suggestions toward
improving our manuscript.

Contribution of Individual Authors to
the Creation of a Scientific Article
(Ghostwriting Policy)
All authors have contributed equally to creation
of this article.
Indeed,
Thierry Bi Boua Lagui and Seydou Traoré carried
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