
 

It is well known that the linear quadratic regulation 
(LQR) method provides good robust characteristics at 
middle frequencies [1, 2], if states of the considered 
system are all observable or measurable. State observer (or 
estimator) is usually used to find un-measurable states. But 
it will degrade the robust characteristic found by the LQR 
method. In another way, the performance of the system 
cannot be guaranteed at low frequencies; i.e., steady-state 
characteristics. In this literature, it will be seen that extra 
states from the integration of measurable states are 
introduced into the LQR procedure and reconfigured with 
proper positions of the summing of reference input 
commands. Then, the reconfigured system provides good 
tracking characteristics at low frequency. Since physical 
systems have low-pass characteristics, it needs not to pay 
much more attention to middle/high frequencies. 

In general, only three body-axial angular rates (p,q,r) and 
two body-axial accelerations ( zacca , yacca ), those measured by 

rate gyros and accelerometers, are used as feedback 
signals for missile flight control systems [3, 4]. The angle of 
attack ( ) and angle of sideslip ( ) are two important states, but 
they are usually not observable for bad accuracy or slow 
datum updating rate. Such that state observer for  and  
is generally needed. In the following sections, approximations 

(~ , ~ ) of  and  are first used to replace  and  by other 

measurable states, and then perform the LQR method to 
find feedback control gains. Integrations of measurable 
states will be introduced also, and the controlled system 
will be reconfigured with constant gains, integrators, and 
reference input commands. It is similar to conventional 
command tracking control configurations [3, 4]. It will be seen 

that approximations ( ~ , ~ ) of  and  keep robust 

properties of the LQR design after controllers realized by 
the proposed control configuration, and elements of 

weighting matrices Q and R of LQR are closely related to 
bandwidths and crossover frequencies of inner loops. Thus one 
can easily meet designing specifications and reduce effects 
of hardware added to the considered system or use lead/lag 
compensatory to compensate effects of hardwires, 
especially for high frequencies, to keep considerable 
robustness obtained from LQR design. 

The flight control system of some specially shaped 
vehicle can be divided into a Pitch Control System and a 
Roll-Yaw Coupled Control System; i.e., one single-
input-single-output system and a two-input-two-output 
system. I can be designed separately, with no need for 
three loops to be designed together[5-7]. The design 
process is relatively simple, which is conducive to the 
design of flight control systems in large airspace. 

For illustration, consider a linearized roll-yaw coupled 
system [8, 9] shown in Fig.1, and aerodynamic 
coefficients given in Appendix A [10, 11]. The 
differential equations of Fig.1 are in the form of 
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where p is the rolling angular rate, r is the yawing angular 
rate, yacca  is the measured acceleration of the yawing channel, 

and * represents the trim condition of the angle of attack. 
Since the second term of Eq.(4) is much smaller than that 
of the first term, Eq.(2) can be approximated by the 
following equation 

Linear Quadratic Regulation Method for a Roll Yaw Coupled 

Supersonic Flight Vehicle 
 

TAIN-SOU TSAY 
Department of Aeronautical Engineering, National Formosa University, No.64, 

Wen-Hua Road, Huwei, Yunlin, TAIWAN 
  

Abstract: In this literature, a linear quadratic regulation (LQR) method with controller reconfiguration and state 
observer is proposed for analyses and designs of a supersonic roll-yaw coupled flight control system. The flight 
control system of some specially shaped airframe can be decomposed into a Pitch Control System and a Roll-
Yaw Coupled Control System. It can be designed separately, no need for three loops to be designed together. 
The design process is relatively simple, which is conducive to the design of flight control systems in large 
airspace. The proposed method for the considered system will give the good tracking characteristic at low 
frequencies and robustness at middle frequencies; simultaneously. All state variables are measurable and found 
controllers are all realizable either in analog or digital hardware.  
 
Keywords: Flight Control System, Controller Realization, LQR method 
Received: May 19, 2021. Revised: April 15, 2022. Accepted: May 14, 2022. Published: July 2, 2022. 

1. Introduction 

2. Problem Formulation 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2022.4.5 Tain-Sou Tsay

E-ISSN: 2766-9823 39 Volume 4, 2022



 

yaccB
* aMrptan

~




                             ( 5 )  

where p, r and yacca  are all measurable. Taking the 

integration of Eq. (5), one has 
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where  pdt ,  rdt  and  dtaV yaccy
.  If    terms  of  

Eqs.(1)-(4) are replaced by
~

 , then differential equations of 

the system can be rewritten as follows: 
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(11)

where 
yaccy aV 


. Then the state-space model for LQR is 

X  =  AX  +  Bu                                        (12a) 

Y  =  CX  +  Du                                        (12b) 

where X=[ p   r   
yV ] t ,  y=[ 



yV ] t  and u=[p r ]
t . 

The  s ta te  var iable  p ,  r ,  and  


yV  are all measurable; , 

 , and 
yV  are integrations of them. Such that all states 

are available for feedback controls. The cost function of the 
standard LQR [1,2] problem is in the form of  

    J = 


to
( XtQX + utR u )  d t                      (13) 

Selecting proper weighting matrices Q and R, then found 
feedback controls are in the form of 

u = - KX                                                      (14) 

where 
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                       (15) 

For single-input single-output (SISO) preliminary 
designs,

13K ,
14K ,

15K ,
21K , and 

22K  of Eq.(15) will be equal 

to zeros for no aerodynamic and kinematical couplings; 

i.e., L , pN , rL , pY , and *tan  are all set to be equal to 

zeros. 

The realization of feedback controls K of the LQR design of 
the roll-yaw coupled system is shown in Fig.2. It can be 
reconfigured with the following relationships of gains: 

11KKip  ,
1112 / KKKop  , 

23KKir  , 
2324 / KKWir  ,

2425 / KKKor  ,

131 KKor  , 
13141 / KKWir  ,

14151 / KKKir  ,

Fig. 3 shows the realization, in which 
21K ,

22K ,
1irK ,

1irW , 

and
1orK  represent gains of cross-coupled controls; 

srK  is the 

scaling factor for unity DC gain of yawing channel. This 
configuration is similar to the conventional configuration [3, 
4] except that cross-coupled controls, and needs ten gains 
and three integrators for the roll-yaw coupled system, It 
needs another eight gains and two integrators for overall 
roll-pitch-yaw coupled system for couplings between 
pitching and yawing channels are usually much than those 
of between rolling and yawing channels or rolling and 
pitching channels [8, 9]. For SISO preliminary design, it is 
reduced to eight gains and three integrators needed for 
the roll-yaw uncoupled system. In the following designs, 
simplified roll-yaw coupled systems are considered for 
illustrating proposed design procedures. 

Consider a roll-yaw coupled system with aerodynamic 
coefficients given in Appendix A, and perform design 
procedures stated in Sections II and III. The weighting 
matrices Q and R for the LQR method are selected properly for 
suitable bandwidths and crossover frequencies of inner loops 
of rolling and yawing channels. A possible choice is 
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For fixed values of matrix R, values of (2, 2)th and 

(5,5)th elements of matrix Q affect bandwidths of the 
rolling channel and yawing channel; respectively, values of 

(1,1)th and (3,3)th elements of matrix Q affects crossover 
frequencies of inner loops of rolling and yawing channels; 

respectively, and value of (4,4)th element of matrix Q 
affects the behaviour of synthetic loop of the yawing channel 
[3, 4]. 

The design results of two sets of ( ** , ) are given in 

Appendix B, in which gives found feedback control gain 
matrices K, gains of realized control configuration, and 

3. Controller Realization 

4. Design Examples 
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eigenvalues of (A-BK)’s and realized systems. From 
eigenvalues of (A-BK)’s and realized systems, it can be seen 
that Eq.(5) provides a good approximation for the angle of 
sideslip( ). Figs. 4 and 5 show frequency responses of 

( ** , )=(12°,1°)  of only the rolling inner loop open and 

only the yawing inner loop open; respectively, in which give 
gain/phase margins and phase/gain crossover frequencies. 
Figs. 4 and 5 show that realized feedback control keeps robust 
properties of LQR designs; i.e., greater than 6dB and 60deg. 
Fig. 6 shows frequency responses of coupling from the 
yawing command yca  to the rolling angular rate p. Note that 

the value of major aerodynamic cross-coupling term L  [8,9] 

is about one-half of pL , conventional three SISO controls 

(i.e., without cross-coupled control) [3, 4] are not good 
enough for compensating effects of L  to get suitable 

robustness and performance. 
Figs, 7, 8, and 9 show frequency responses of the system 

with hardware and compensators. The compensators and 
models of hardware are given in Appendix C. The lead 
compensators PIC(S) and YIC(S) are used to compensate for 
the effects of hardware, especially for gain/phase at high 
frequencies. The gain/phase margins and phase/gain crossover 
frequencies of another set of ( ** , ) = (6°, 1°) are given in 

Table 1. It can be seen that compensated systems still have 
considerable robustness after the hardware is added. The low-
frequency gain margin (LFGM) 0.39 shown in Fig.4 
represents the compensated system has good property for 
against serious unstable aerodynamic coupling [8, 9]. 

In this literature, proposed design procedures have 
provided a way to apply the LQR method for supersonic 
missile flight control systems, and relations between 
feedback controls found by the LQR method and cross-
coupled command tracking control configuration. The 
designing results have shown that proposed design 
procedures are powerful for the considered system and found 
controllers are all realizable. 
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APPENDIX A: Linearized Aerodynamic Models 

     The Linearized aerodynamic models of an air-to-air missile 
with skid-to-turn guidance for Mach number= 2.00 and 
Altitude=0.5Km with two sets of Angle of Attacks and 
sideslip ( * , * ) are given below: 

A.1. *  = 12.0°, *  = 1.00°, VM =676.8m/s, L  = 0.041, 

 
L  = 8951.6, L  = 684.45, 

pL
 =15609, 

pL  =-3.8, 

 
qL

 =780.5,
rL  =780.45, Z  =-176.7,

BM = .0145, 

 
rN  =-2.23, N =274.03, 

rN  =-599.7, 
pN

=-29.99, 

 
qM =-2.23,

M =-739.53, 
qM 

=-599.7, 
pM 

=-29.99, 

 
qZ

=-30.61,
Y  =-95.853, 

rY  =30.61, 
pY

 = 0.000, 

 *
r  =0.45°, *

q  =-11.33°, *
ya  =-1.42G, *

za  =-22.27G, 

     
A.2. *  = 6.0°, *  = 1.00°, VM =676.8m/s, L  =  0.041, 

 
L  = 4446.8,

L  =  518.8,  
pL

 =15609, 
pL  =-3.8, 

 
qL

 =780.5,
rL  =780.45, Z  =-136.9,

BM = 0.0145,

 
rN  =-2.23, N =274.03, 

rN =-599.7,
pN

=-29.99, 

 
qM =-2.23,

M =-490.96, 
qM 

=-599.7, 
pM 

=-29.99, 

 
qZ

=-30.61,
Y  =-95.853, 

rY  = 30.61,
pY

 = 0.000, 

 *
r  = 0.46°, *

q  =-11.33°, *
ya  =-1.42G, *

za  =-9.11G, 

Note that the terms with (.*) represent trim conditions. 

 

APPENDIX B: Feedback Gains and Eigenvalues 

B.1.(
* , * )=(12°,1°) 

a. State feedback gain matrix 

   




















1220.01573.20837.01983.00046.0

0281.09023.00055.02686.00055.0
K

 

 

b. Gains of realized control configuration 

5. Conclusions 
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opK  =49.2175, 
ipK =0.0055,  

orK =0.0566, 
irW =25.7823, 

irK =0.0837, 

1orK =0.0311, 
1irW =163.712, 

1irK =0.0055, 
 

c. Eigen values of ( A-BK ) 
-25.1788 j 20.6231 
-43.7590 ± j12.5597 

-7.7944  
 

d. Eigen values of the realized system with LQR gains 
-26.5175 j20.5905 
-42.4246  j9.844,3 
-7.9494  

0.0000   
 
 

APPENDIX C: Compensators and Hardware Models 

1. Rolling inner loop compensator cascaded to 
ipK  

   

1)652/(80.02)652/(

1)352/(65.02)352/(
)(

22

22








SS

SS
SPIC  

2. Yawing inner loop compensator cascaded to 
irK  

1)552/(85.02)552/(

1)352/(65.02)352/(
)(

22

22








SS

SS
SYIC  

3. Actuator model 
   

1)502/(60.02)502/(

1
)(

22 


 SS
SCAS  

4. Rate gyro/accelerometer models 

1)602/(60.02)602/(

1
)(

22 


 SS
SRG  

5. Inner loop low-pass filter body angular rate 

1)702/(

1
)(




S
SLPFI

 

6. Outer loop low-pass filter for acceleration 

1)302/(

1
)(




S
SLPFO  

 
 

TABLE 1. 
Gain/phase Margins and Phase/gain Crossover Frequencies. 

Rolling Channel Yawing Channel 

LFGM HFGM PM(°) HFGM PM(°) 

0.23 3. 36 42.2 6 .67  60.1 

1.83Hz 31.1 H z  9.0Hz 16.5 Hz 9 . 5 Hz 

 

Fig.1. Linear Model of Roll-Yaw Coupled System. 

 
 

 

Fig.2. State Feedback Control Configuration. 
 
 
 

 

Fig.3. Realized Feedback Control Configuration. 
 
 

 
Fig.4. Frequency Responses of Only Rolling Inner Loop Open. 
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Fig.5. Frequency Responses of Only Yaw Inner Loop Open. 

 
 

 
Fig.6. Frequency Responses of Coupling Term P/ayc. 

 
 

 
Fig.7. Frequency Responses of Only Rolling Inner Loop Open with Hardware. 

 
Fig.8. Frequency Responses of Only Yaw Inner Loop Open with Hardware. 

 
 

 
Fig. 9 Frequency Responses of Coupling Term P/ayc with Hardware. 
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